DOI QR코드

DOI QR Code

Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels

  • Wang, Chenchong (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University) ;
  • Shen, Chunguang (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University) ;
  • Huo, Xiaojie (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Zhang, Chi (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Xu, Wei (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University)
  • Received : 2019.08.11
  • Accepted : 2019.10.21
  • Published : 2020.05.25

Abstract

In order to make reasonable design for the improvement of comprehensive mechanical properties of RAFM steels, the design system with both machine learning and high-throughput optimization algorithm was established. As the basis of the design system, a dataset of RAFM steels was compiled from previous literatures. Then, feature engineering guided random forests regressors were trained by the dataset and NSGA II algorithm were used for the selection of the optimal solutions from the large-scale solution set with nine composition features and two treatment processing features. The selected optimal solutions by this design system showed prospective mechanical properties, which was also consistent with the physical metallurgy theory. This efficiency design mode could give the enlightenment for the design of other metal structural materials with the requirement of multi-properties.

Keywords

References

  1. G.B. Olson, Genomic materials design: the ferrous frontier, Acta Mater. 61 (2013) 771-781. https://doi.org/10.1016/j.actamat.2012.10.045
  2. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Multi-scale simulation of hydrogen influenced critical stress intensity in high CoeNi secondary hardening steel, Mater. Des. 87 (2015) 501-506. https://doi.org/10.1016/j.matdes.2015.08.040
  3. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Microstructure analysis and yield strength simulation in high CoeNi secondary hardening steel, Mater. Sci. Eng. A 669 (2016) 312-317.
  4. C. Wang, C. Zhang, Z. Yang, J. Zhao, Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel, Nucl. Eng. Technol. 49 (2017) 569-575. https://doi.org/10.1016/j.net.2016.10.006
  5. J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater. 61 (2013) 4939-4952. https://doi.org/10.1016/j.actamat.2013.04.052
  6. S. Datta, F. Pettersson, S. Ganguly, H. Saxen, N. Chakraborti, Designing High strength multi-phase steel for improved strengtheductility balance using neural networks and multi-objective genetic algorithms, ISIJ Int. 47 (2007) 1195-1203. https://doi.org/10.2355/isijinternational.47.1195
  7. S. Datta, F. Pettersson, S. Ganguly, H. Saxen, N. Chakraborti, Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks, Mater. Manuf. Process. 23 (2008) 130-137. https://doi.org/10.1080/10426910701774528
  8. S. Ganguly, S. Datta, N. Chakraborti, Genetic algorithms in optimization of strength and ductility of low-carbon steels, Mater. Manuf. Process. 22 (2007) 650-658. https://doi.org/10.1080/10426910701323607
  9. S. Ganguly, S. Datta, N. Chakraborti, Genetic algorithm-based search on the role of variables in the work hardening process of multiphase steels, Comput. Mater. Sci. 45 (2009) 158-166. https://doi.org/10.1016/j.commatsci.2008.01.074
  10. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Analysis of fracture toughness in high CoeNi secondary hardening steel using FEM, Mater. Sci. Eng. A 646 (2015) 1-7. https://doi.org/10.1016/j.msea.2015.08.003
  11. A. Bernieri, G. Betta, L. Ferrigno, M. Laracca, S. Mastrostefano, Multifrequency excitation and support vector machine regressor for ECT defect characterization, IEEE Trans. Instrum. Meas. 63 (2014) 1272-1280. https://doi.org/10.1109/TIM.2013.2292326
  12. Z. Han, Y. Liu, J. Zhao, W. Wang, Real time prediction for converter gas tank levels based on multi-output least square support vector regressor, Contr. Eng. Pract. 20 (2012) 1400-1409. https://doi.org/10.1016/j.conengprac.2012.08.006
  13. R. Kemp, G.A. Cottrell, H.K.D.H. Bhadeshia, G.R. Odette, T. Yamamoto, H. Kishimoto, Neural-network analysis of irradiation hardening in lowactivation steels, J. Nucl. Mater. 348 (2006) 311-328. https://doi.org/10.1016/j.jnucmat.2005.09.022
  14. F.Y. Lu, Z.Q. Yin, C. Wang, C.H. Cui, J. Teng, S. Wang, W. Chen, W. Huang, B.J. Xu, G.C. Guo, Z.F. Han, Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network, J. Opt. Soc. Am. B 36 (2019) B92-B98. https://doi.org/10.1364/josab.36.000b92
  15. J. Ding, Z. Bar-Joseph, MethRaFo: MeDIP-seq methylation estimate using a random forest regressor, Bioinformatics 33 (2017) 3477-3479. https://doi.org/10.1093/bioinformatics/btx449
  16. S.F. Long, M. Zhao, X.F. He, Yield stress prediction model of RAFM steel based on the improved GDM-SA-SVR algorithm, Comput. Mater. Continua (CMC) 58 (2019) 727-760.
  17. M.M. Jin, P.H. Cao, M.P. Short, Predicting the onset of void swelling in irradiated metals with machine learning, J. Nucl. Mater. 523 (2019) 189-197.
  18. Q. Lu, S. van der Zwaag, W. Xu, High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications, J. Nucl. Mater. 469 (2016) 217-222. https://doi.org/10.1016/j.jnucmat.2015.11.052
  19. S. Chen, L. Rong, Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel, J. Nucl. Mater. 459 (2015) 13-19.
  20. P. Fernandez, A.M. Lancha, J. Lapena, M. Hernandez-Mayoral, Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer'97 on as-received condition, Fusion Eng. Des. 58-59 (2001) 787-792. https://doi.org/10.1016/S0920-3796(01)00563-4
  21. R.L. Klueh, D.J. Alexander, M.A. Sokolov, Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5-9Cr-WVTaB steels, J. Nucl. Mater. 304 (2002) 139-152. https://doi.org/10.1016/S0022-3115(02)00885-1
  22. R.L. Klueh, J.J. Kai, D.J. Alexander, Microstructure mechanical-properties correlation of irradiated conventional and reduced-activation martensitic steels, J. Nucl. Mater. 225 (1995) 175-186. https://doi.org/10.1016/0022-3115(95)00061-5
  23. C.H. Lee, J.Y. Park, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and charpy impact properties of reduced activation ferriticemartensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957. https://doi.org/10.1016/j.fusengdes.2017.05.085
  24. R. Ma, Y. Yang, Q. Yan, Y. Yang, X. Li, C. Ge, Effect of alloying on the properties of 9Cr low activation martensitic steels, Acta Metall. Sin. 23 (2010) 451-460.
  25. M.G. Park, C.H. Lee, J. Moon, J.Y. Park, T.H. Lee, N. Kang, H.C. Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22.
  26. A. Puype, L. Malerba, N. De Wispelaere, R. Petrov, J. Sietsma, Effect of W and N on mechanical properties of reduced activation ferritic/martensitic EUROFERbased steel grades, J. Nucl. Mater. 502 (2018) 282-288.
  27. L. Tan, L.L. Snead, Y. Katoh, Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors, J. Nucl. Mater. 478 (2016) 42-49. https://doi.org/10.1016/j.jnucmat.2016.05.037
  28. J. Vanaja, K. Laha, M. Nandagopal, S. Sam, M.D. Mathew, T. Jayakumar, E. Rajendra Kumar, Effect of tungsten on tensile properties and flow behaviour of RAFM steel, J. Nucl. Mater. 433 (2013) 412-418. https://doi.org/10.1016/j.jnucmat.2012.10.040
  29. P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, Effect of N on the precipitation behaviours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing, J. Nucl. Mater. 442 (2013) S9-S12. https://doi.org/10.1016/j.jnucmat.2013.03.081
  30. H. Han, R. Yu, B. Li, Y. Zhang, Multi-objective optimization of corrugated tube inserted with multi-channel twisted tape using RSM and NSGA-II, Appl. Therm. Eng. 159 (2019).
  31. M.S. Mohammed, R.A. Vural, NSGA-II plus FEM based loss optimization of three-phase transformer, IEEE Trans. Ind. Electron. 66 (2019) 7417-7425. https://doi.org/10.1109/tie.2018.2881935
  32. S. Peng, T. Li, J. Zhao, S. Lv, G.Z. Tan, M. Dong, H. Zhang, Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II, J. Clean. Prod. 227 (2019) 58-69.
  33. B. Sen, S.A.I. Hussain, M. Mia, U.K. Mandal, S.P. Mondal, Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690, Int. J. Adv. Manuf. Technol. 103 (2019) 1811-829. https://doi.org/10.1007/s00170-019-03620-6
  34. C. Wang, C. Zhang, J. Zhao, Z. Yang, W. Liu, Microstructure evolution and yield strength of CLAM steel in low irradiation condition, Mater. Sci. Eng. A 682 (2017) 563-568.
  35. W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at 550 degrees C, Nucl. Eng. Technol. 48 (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004
  36. S.N. Zhu, C. Zhang, Z.G. Yang, C.C. Wang, Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment, Nucl. Eng. Technol. 49 (2017) 1748-1751. https://doi.org/10.1016/j.net.2017.08.021
  37. D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Modern data analytics approach to predict creep of high-temperature alloys, Acta Mater. 168 (2019) 321-330. https://doi.org/10.1016/j.actamat.2019.02.017
  38. A. Panda, R. Naskar, S. Pal, Deep learning approach for segmentation of plain carbon steel microstructure images, IET Image Process. 13 (2019) 1516-1524.
  39. Z. Xiong, Y.X. Cui, Z.H. Liu, Y. Zhao, M. Hu, J.J. Hu, Evaluating explorative prediction power of machine learning algorithms for materials discovery using -fold forward cross-validation, Comput. Mater. Sci. 171 (2020), 109203.

Cited by

  1. Exploration of Machine Learning to Predict Hot Ductility of Cast Steel from Chemical Composition and Thermal Conditions vol.27, pp.2, 2020, https://doi.org/10.1007/s12540-020-00713-w
  2. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm vol.213, 2020, https://doi.org/10.1016/j.matdes.2021.110326