• Title/Summary/Keyword: MVP, 자기벡터포텐셜

Search Result 3, Processing Time 0.017 seconds

Characteristic Analysis of Eddy Current Testing According to the finite Element formulations (와전류탐상의 3차원 유한요소 정식화에 따른 특성 분석)

  • Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.384-390
    • /
    • 2005
  • In the numerical analysis of En (eddy current testing) using 3-dimensional FEM (finite element method), MVP (magnetic vector potential) and electric scalar potential are used as variables in conductor region. Three dimensional modeling makes number of unknowns increase, and the degree of freedom of variables also makes number of unknowns increase. Because of this reason, modified UP is used to reduce the number of unknowns. Gauge condition is enforced artificially on existing FEM formulations to insure the uniqueness of MVP. So in this paper the effects of these FEM formulation procedures on ECT are investigated and the appropriate FEM formulation is suggested for accurate ECT simulation.

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • Yang, Jae-Jin;Lee, Bok-Yong;Lee, Byung-Hoan;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF