• Title/Summary/Keyword: MT 탐사

Search Result 155, Processing Time 0.018 seconds

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Correlation between the distribution of cultural noise source and MT data (인공잡음원의 공간분포와 MT자료의 상관관계)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.209-214
    • /
    • 2005
  • In the present age, the quality of MT(magnetotellurics) data highly depends on the level of industrial interference in data. We analyzed the correlation between the spatial distributions of man-made EM noise source and the characteristics of MT data. The noise source analysis shows the correlation between the noise source density and the power spectral density of measured magnetic field in the frequency band of 60 Hz harmonics. In the MT 'dead band', the strong polarization observed on the magnetic field reveals that the severe artificial noises are caused by the adjacent metropolis.

  • PDF

Prediction of Electromagnetic Noise using Spatial Modelling in Magnetotellurics (공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측)

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • The quality of MT (magnetotellurics) data highly depends on the level of artificial noise form industrial sources. We have conducted the feasibility study of MT noise modelling using digital spatial data and spatial modelling through the comparison between the predicted and the measured MT noises. A simple noise model predicting the intensity of electromagnetic field radiated from the latent noise sources, that is, the electric facilities in the building, road and high-voltage powerline, is developed in consideration of the propagation property of electromagnetic waves. From the analysis of correlation between the predicted and the measured noise power, the correlation coefficients of electric field are higher than those of magnetic field in whole frequency band. The magnetic field component has the high correlation in the narrow band near 60 Hz only. The spatial noise modelling proposed in this study would provide some useful informations for the MT surveys in the noisy environment like urban area.

A Geophysical Survey of an Iron Mine Site (철광산 지역에서의 물리탐사 기술 적용 연구)

  • Kim, Kiyeon;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.575-587
    • /
    • 2013
  • DC electrical and electromagnetic survey was applied to evaluate the reserve of an iron mine site. We analyzed the borehole cores and the cores sampled from outcrops in order to decide which geophysical method was efficient for the evaluation of iron mine site and to understand the geological setting around the target area. Based on the core tests for specific weight, density, porosity, resistivity and P-wave velocity, showing that the magnetite could be distinguishable by the electrical property, we decided to conduct the electrical survey to investigate the irone mine site. According to previous studies, the DC electrical survey was known to have various arrays with high resolutions effective to the survey of the iron mine site. However it was also known that the skin depth is too shallow to grasp the deep structure of iron mine. To compensate the weakness of the DC electrical method, we applied the MagnetoTelluric (MT) survey. In addition, a Controlled Source MT (CSMT) method was also applied to make up the shortcoming of MT method which is weak for shallow targets. From the DC electrical and MT survey, we found a new low resistivity zone, which is believed to be a magnetite reserve beneath the old abandoned mine. Therefore, this study was confirmed for additional utility value.

Analysis of Static Shift and its Correction in Magnetotelluric Surveys (MT 탐사에서의 정적효과 및 보정법 분석)

  • Hanna Jang;Yoonho Song;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In magnetotelluric (MT) surveys, small inhomogeneities near the surface cause a static shift in which apparent resistivities shift regardless of frequency. As the static shift in MT data leads to errors in subsurface structure interpretation, many studies have been conducted over the past few decades to mitigate or remove the distortions it caused. The most representative method involves removing static shifts from the data before inversion. Conversely, static shifts can be corrected during inversion or included in the inversion process. In addition, other geophysical data can be used to remove static shifts. However, the correction methods are limited to one-dimensional (1D) static responses, and limitations remain in two- or three-dimensional (2D or 3D) interpretation of distorted MT data owing to static shifts. This study provides a foundation for future studies on static shift by analyzing several previously published methods.

Static Effect in Magnetotelluric Responses: An Implication from the EM Integral Equation (MT 탐사 반응에서 정적효과: 적분방정식을 통한 고찰)

  • Yoonho Song
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.181-195
    • /
    • 2024
  • This tutorial explains that the static effect in the magnetotelluric (MT) survey is a physical phenomenon caused by charges accumulated on the boundaries of subsurface inhomogeneities. To facilitate understanding of the physical phenomenon, differences between static induction and charge accumulation on the boundary are explained and analyzed with help of schematic illustrations. Subsequently, from the electromagnetic (EM) integral equation formulation, it is clearly shown that the secondary electric field due to charges accumulated on the interface in the presence of the primary field appears as the static effect. Therefore, except in the cases of the layered earth or a two-dimensional earth with transverse magnetic (TM) mode excitation, the static effect always exists in MT responses and further, it is not 'static' but rather frequency dependent. Despite the fact that the static effect is a secondary electric field due to inhomogeneity, inevitable under-sampling in the frequency and spatial domains prevent the effect from being handled properly in numerical inversion. Therefore, considering the practical aspects of the MT survey, which cannot be a continuous measurement covering the entire survey area over a wide frequency band, a three-dimensional (3-D) inversion incorporating the static shift as a constraint with the Gaussian distribution is introduced. To enhance understanding of the integral equation EM modeling, the formulation of the 3-D integral equation and mathematical analyses of the Green tensor and scattering current are described in detail in the Appendix.

공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측

  • Lee, Chun-Gi;Lee, Hui-Sun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.112-123
    • /
    • 2005
  • 자기지전류 탐사의 적용에 있어 인공잡음의 영향은 탐사의 승패를 좌우하는 중요한 요소이며 인공잡음의 영향을 최소화할 수 있는 탐사의 설계와 자료처리가 요구되고 있다. 본 연구에서는 수치공간자료를 이용한 공간모델링을 통해 MT 주파수 대역에서의 잡음을 예측하고 실제 탐사 자료와 비교분석하여 MT 잡음 모델링을 가능성을 살펴보았다. 수치지도로부터 추출된 잡음원일 가능성이 높은 건물, 도로, 고압 송전선에 의해 발생하는 전자기장의 강도를 지하매질의 전기전도도에 따른 전자기파의 전파 특성을 고려하여 예측하는 잡음모델을 제안하였다. 제안된 잡음모델로부터 예측된 잡음 파워와 실제 탐사를 통해 측정된 MT 자료와의 상관도 분석을 수행한 결과, 전반적으로 전기장에서는 넓은 주파수 대역에서 높은 상관관계를 보이는 반면 자기장은 60 Hz 부근의 대역에서만 상관관계를 가진다. 본 연구에서 제안된 공간모델링을 통한 잡음 예측은 특히 고도로 산업화되어가는 도시 주변지역에서의 MT 탐사를 수행하는데 있어 유용한 정보를 제공할 수 있을 것이다.

  • PDF

Analysis of MT Data Acquired in Victoria, Australia (호주 Victoria주 MT 탐사 자료 해석)

  • Lee, Seong-Kon;Lee, Tae-Jong;Uchida, Toshihiro;Park, In-Hwa;Song, Yoon-Ho;Cull, Jim
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.184-196
    • /
    • 2008
  • We perform MT soundings in Bendigo, the northern part of Victoria, Australia, to investigate the deep subsurface geologic structure. The primary purpose of this survey is to figure out whether the discontinuity such as faults extends northward. The time series of MT signal were measured over 11 days at 71 measurement stations together with at remote reference, which help enhance the quality of impedance estimation and its interpretation. The impedances are estimated by robust processing using remote reference technique and then inverted with 2D MT 2D inversion. We can see that known faults are clearly imaged in MT 2D inversion. Comparing resistivity images from MT 2D inversion with interpreted boundary from reflection seismic exploration, two interpretations match well each other.

MT surveys near Century Zinc Mine, NW Queensland, Australia (호주 Century 아연 광산에서의 MT 탐사)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Cull, James
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.345-352
    • /
    • 2007
  • Two-dimensional (2D) MT surveys near the Century mine in Australia have been performed with very far remote reference in Esashi, Japan (RR_ESS) as well as Gregory Downs (RR_GREG), which are roughly 6,400 km and 80 km apart from the survey area, respectively. Good quality of MT data could be obtained by remote reference processing with RR_GREG, while the coherency of magnetic fields between field sites and RR_ESS was not sufficient to be used as remote data. Both 2D and 3D inversion of 2D profile data represented the general geological structure beneath the survey area. The main target of the survey, Termite Range Fault, appeared as a boundary between a conductive block to the north and a resistive block to the south in the reconstructed resistivity section, and is inclined slightly to the north-east direction.