• Title/Summary/Keyword: MSW Incineration

Search Result 33, Processing Time 0.021 seconds

Investigation of N2O Emission and Reduction Effect from MSW Incineration Plant (도시고형폐기물 소각시설에서 발생하는 N2O 발생량 조사 및 저감효과에 관한 연구)

  • Song, Hyun-Ok;Ko, Jae-Churl;Choi, Sang-Hyun;Kim, Duk-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.672-678
    • /
    • 2017
  • In this study, municipal solid waste (MSW) has collected 3 times and physico-chemical analysis has done. Nitrous oxide emissions from MSW incineration plant were measured continuously by EPA Method 18 and it was compared with the emission by calculation using the emission factor. The $N_2O$ emission of MSW incineration plant was more than twice as large as the emission by calculation. It was found that the installation of abatement facilities in MSW incineration plant is effective in achieving the greenhouse reduction targets and it can be ensure economical efficiency through emission trading system.

A Treatment and Construction Use of Municipal Solid Waste Ash (도시고형 폐기물 소각재의 무해화 처리와 응용)

  • Lee, Jae-Jang;Shin, Hee-Duck;Park, Chong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.45-49
    • /
    • 2001
  • Many cities and provinces are rapidly depleting landfill spaces. As the result, some municities have adopted to incinerate their municipal solid waste(MSW). The motive behind the choice is that incineration significantly reduces the volume of solid waste in need of disposal, destroys the harmful organic compounds that are present in MSW, and provides an attractive source of alternative energy. Conclusively, the generation of MSW ash is expected to increse in the furture. However, disposing the MSW ash in landfills may not always be an environmentally or an economically feasible solution. This paper addresses the various issues associated with MSW ash and its possible use in construction applications.

  • PDF

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

Prediction of greenhouse gas emission from municipal solid waste for South Korea

  • Popli, Kanchan;Lim, Jeejae;Kim, Hyeon Kyeong;Kim, Young Min;Tuu, Nguyen Thanh;Kim, Seungdo
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.462-469
    • /
    • 2020
  • This study is proposing a System Dynamics Model for estimating Greenhouse Gas (GHG) emission from treating Municipal Solid Waste (MSW) in South Korea for years 2000 to 2030. The government of country decided to decrease the total GHG emission from waste sector in 2030 as per Business-as-usual level. In context, four scenarios are generated to predict GHG emission from treating the MSW with three processes i.e., landfill, incineration and recycling. For prior step, MSW generation rate is projected for present and future case using population and waste generation per capita data. It is found that population and total MSW are directly correlated. The total population will increase to 56.27 million and total MSW will be 21.59 million tons in 2030. The methods for estimating GHG emission from landfill, incineration and recycling are adopted from IPCC, 2006 guidelines. The study indicates that Scenario 2 is best to adopt for decreasing the total GHG emission in future where recycling waste is increased to 75% and landfill waste is decreased to 7.6%. Lastly, it is concluded that choosing proper method for treating the MSW in country can result into savings of GHG emission.

Feasibility Evaluation of Co-Incineration with MSW for Efficient Recycling of the Rejects after Separation Processes in MRF (재활용 기반시설에서 발생하는 선별 잔재물의 자원화를 위한 도시생활폐기물과의 혼합소각 가능성 평가)

  • Shin, Taek-Soo;Sung, Baek-Nam;Yeon, Ik-Jun;Cho, Byung-Yeol;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.767-773
    • /
    • 2011
  • The purpose of this study was to investigate the possibility of an alternative fuel resource by incinerating a mix of combustible MSW (municipal solid waste) and offals after separating recyclable material at the MRF (material recovery facilities) location. We analyzed the physical and chemical properties including the 3-contents, the calorific value, and chemical compositions of the separation rejects in MRF, and compared the results with combustible MSW. Moreover, we experimented the trend of combustible properties and the concentration change of air pollutants at mixed incineration in the MSW incinerator. According to the results of the experiment, the separation rejects showed higher heating value (5,865 kcal/kg), and lower moisture and ash content than combustible MSW. Since we have incinerated MSW in the MSW incinerator mixing the offals at 30% and 50% respectively, we know that the change of the concentration of dust, $SO_2$, $NO_2$, and CO did not appear significant, and not exceed the pollutants emission regulation. But, considering the enhancement of the HCl emission concentration (max. 33.7 ppm) at the co-incineration of the 50% offals, we believe that the proper mixing ratio of the separation rejects would become within 30%.

The study on the combustion model and combustion characteristics for stoker type incinerator (스토커형 소각로의 연소특성 및 연소 모델에 관한 연구)

  • Kim, Ho-Yeong;Hwang, Ho-Yeong;Jeon, Cheol-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.627-639
    • /
    • 1998
  • A combustion model for the incineration of municipal solid waste(MSW) in the stoker type incinerator was developed by considering the variation of physical composition of MSW. Theoretical analysis and numerical simulation for the combustion characteristics in incinerator were conducted by using the present model and the effects of compositional variation on the incineration characteristics of MSW was examined theoretically. It is found that large excess air enhances drying, but depresses volatilization. For the large value of moisture content, pyrolysis is fast but drying is slow. As the value of plastic content increases, devolatilization becomes slower. Larger amount of primary air supply to the rear side of stoker leads to increase the possibility of delaying the combustion.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

Study of the MSW landfill Facility of Installation and Consideration (폐기물 매립시설 설치방법 및 고려사항에 대한 고찰)

  • Kim, Sang-Keun;Kwon, Ki-Bum;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.259-266
    • /
    • 2008
  • In the past, MSW (Municipal Solid Waste) disposal was typically done by recycling, incineration, or landfilling. In South Korea prior to the late 1950's, land burial was usually accomplished by disposal in an open dump. Currently, with increasing concerns and environmental recognition, MSW disposal and landfilling is more restricted. MSW landfill facilities have been developed with certain design and construction specifications. However, these methods have a space for improvement. MSW landfill facilities follow a step wise approach of design, construction, operation and closure management after use in agreement with established environmental and sanitary standards. This study intends to give a technical guidance for installation and consideration of newly established MSW landfill facilities, and also provide an establishment and regular inspection of MSW landfill facilities.

  • PDF

The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading (하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.583-589
    • /
    • 2012
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (Municipal Solid Waste) and SS (Sewage Sludge) through the change of heat and atmospheric pollutants. In this study, LHV (Low Heating Value) is 100~300 kcal/kg because the MC (Moisture Content) of de-hydrated sewage sludge is approximately 80%. From the results, we knew the feasibility of co-incineration for MSW (80%) and SS (20%). As the co-incineration rate of SS up to 20% became higher, the loading of heat and atmospheric pollutants was not influenced.

A Study on the Component Analysis of Municipal Solid Wastes and the Effect of Landfill Leachate on the Evironment (폐기물 성상분석과 매립장 침출수가 환경에 미치는 영향에 관한 연구)

  • 윤오섭
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 1992
  • The objective of this study is to investigate the generation rates, composition, propertion and lower heating values of each material in the municipal solid wastes(MSW) as well as the effect of landfill leachate on the environment in Taejon. The results are as follows: 1. The annual average generation rate of MSW in Taejon is approximately 1.7kg/c.d. 2. The weight percent of combustible matters is on average 80 and the lower heating value of MSW is measured to be more than 1,700 kcal/kg after removing the briquette component. 3. It is necessary for us to take a proper management system for leachate treatment in the landfill because it has many problems in the sewage and groundwater. 4. It is recommeded that MSW be treated by multiple methods such as the sanitary landfill, resources and recovery, composting and incineration.

  • PDF