본 논문에서는 MSVQ(Multi-Section Vector Quantization)와 시간지연 회귀 신경회로망(TDRNN)을 이용한 하이브리드 구조의 음성인식 방법을 제안한다. MSVQ는 음성의 길이를 일정한 구간 수로 정규화한 코드북을 생성하고, 시간지연 회귀 신경회로망은 이 코드북을 이용하여 음성을 인식한다. 시간지연 회귀 신경회로망은 음성의 시계열 문맥정보를 잘 학습할 수 있는 구조로 구성되었다. 음성특징으로 인지선형예측(PLP) 계수가 사용되었다. 음성인식 실험을 수행한 결과 MSVQ/TDRNN 음성인식기는 97.9 %의 화자독립 음성 인식률을 보였다.
본 논문은 One Stage MSVQ/DP를 제안하여 단어 인식을 수행하였다. 인식 대상 어휘로는 대학교 행정부서명 40개를 선정 하였고 인식을 위한 특징 파라메타로는 10차 LPC 켑스트럼 계수를 사용하였다. 본 연구에서 제안하는 One Stage MSVQ/DP 인식 시스템 이외에도 같은 데이터 상에서 LBDTW인식 시스템, One Stage DP 인식시스템에 의한 음성인식 실험을 수행하였다. LBDTW와 One Stage DP알고리즘에 의한 인식율은 $83.3\%$와 $87.5\%$였으며 본 연구에서 제안한 MSVQ/DP에 의한 인식율은 $91.6\%$였다.
본 논문에서는 하이드로폰으로 측정한 지진음 데이터를 가지고 20 MSVQ 알고리즘을 이용하여 자연지진음과 인공지진음을 식별하였다. 지진음 식별을 위한 특징 파라미터로는 스펙트럼 대역별 에너지, MFCC를 사용하였으며, 실험을 통하여 식별에 적합한 특징 파라미터 차수를 결정하였다. 2개의 특징 파라미터를 가지고 20 MSVQ 알고리즘으로 식별한 결과 MFCC를 사용하였을 경우에 99.9%, 스펙트럼 에너지 파라미터는 83.9%의 식별결과를 얻었다. 본 논문에서 제안한 파라미터와 알고리즘을 사용하여 지진음을 식별한 결과 성능이 매우 우수함을 확인하였다.
본 논문은 화자 독립의 단독이 언직에 관한 연구로 기존의 MSVQ(multisection vector quantization) 일질시스템을 개선한 새로운 MSVQ 시스템을 제안한다. 제안된 내용은 기존의 시스템과는 달리 인식시 시험패턴의 구간 수를 표준패턴의 구간 수보다 한 구간 더 늘리는 것이다. 이 방법에 의한 실험시 인식 대상으로는 146개의 DDD 지역망을 선택했으며, 특징 파라베타로는 12사 LPC 스트럼(cepstrum) 계수를 사용했고 코드북 지정석 중심점 구하는 방법으로 MINSUM과 MINIMAX기법을 사용하였다. 실험 결과에 의하면 DTW(dynamic time warping) 패턴 매칭 방법, VQ(vector quantization)에 의한 방법은 물론 기존의 MSVQ 방법보다 계산량이 감소함과 동시에 더 높은 인식율을 얻을 수 있었다. 수 있었다.
This paper proposes a MSHMM(Multi-Section Hidden Markov Model) recognition method based on Fuzzy Concept, as a method on the speech recognition of speaker-independent. In this recognition method, training data are divided into several section and multi-observation sequences given proper probabilities by fuzzy rule according to order of short distance from MSVQ codebook per each section are obtained. Thereafter, the HMM per each section using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. In this paper, other experiments to compare with the results of these experiments are implemented by the various conventional recognition methods(DP, MSVQ, DMS, general HMM) under the same data. Through results of all-round experiment, it is proved that the proposed MSHMM based on fuzzy concept is superior to DP method, MSVQ method, DMS model and general HMM model in recognition rate and computational time, and does not decreases recognition rate as 92.91% in spite of increment of speaker number.
The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.
The purpose of this paper is to compare a class of vector quantization techniques which include GVQ(Genera VQ) MSVQ(Mean separated VQ) and DCT_VQ The VQ techniques are applied to six images and both subjective and objective performance comparison are made The results indicate that the transform domain approach(DCT_VQ) yields more syable results than the spatial domain method (GVQ, MSVQ)
In this paper, isolated words are recognized using multisection VQ and HMM. As recognition vocabuaries, 20 area-name which is uttered 5 times by 3 speakers is selected. In generating codebook, we devide recognition vocabulary into equal length, section, and make standard VQ codebook to each section and calculate observation by section and than recognize isolated words by HMM training. Multisection VQ codebook has time information and as observation is calculated by eacy section, computation is lesser and recongnition rate is higher than by whole codword. As a result, it is proved that recognition rate is higher in case of HMM using multisection VQ codebook.
This paper proposes a HMM model based on fuzzy, as a method on the speech recognition of speaker-independent. In this recognition method, multi-observation sequences which give proper probabilities by fuzzy rule according to order of short distance from VQ codebook are obtained. Thereafter, the HMM model using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. The vocabularies for recognition experiment are 146 DDD are names, and the feature parameter is 10S0thT LPC cepstrum coefficients. Besides the speech recognition experiments of proposed model, for comparison with it, we perform the experiments by DP, MSVQ and general HMM under same condition and data. Through the experiment results, it is proved that HMM model using fuzzy proposed in this paper is superior to DP method, MSVQ and general HMM model in recognition rate and computational time.
한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
/
pp.1039-1045
/
1994
The speech recognition systems using VQ have usually the problem decreasing recognition rate, MSVQ assigning the dissimilar vectors to a segment. In this paper, applying One-stage DMS/DP algorithm to the recognition experiments, we can solve these problems to what degree. Recognition experiment is peformed for Korean DDD area names with DMS model of 20 sections and word unit template. We carried out the experiment in speaker dependent and speaker independent, and get a recognition rates of 97.7% and 81.7% respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.