• Title/Summary/Keyword: MSCs

Search Result 323, Processing Time 0.022 seconds

Neural Antigen Expressions in Cultured Human Umbilical Cord Blood Stem Cells in vitro (시험관내 배양된 제대혈 모세포에서의 신경항원 발현)

  • Ha, Yoon;Yoon, Do Heum;Yeon, Dong Su;Kim, Hyun Ok;Lee, Jin Ju;Cho, Yong Eun;Choi, Joong Uhn
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.8
    • /
    • pp.963-969
    • /
    • 2001
  • Objectives : Cord blood stem cells have been widely used as donor cells for bone marrow transplantation recently. These cells can give rise to a variety of hematopoietic lineages to repopulate the blood. Recent observations reveal that some bone marrow cells and bone marrow stromal cells(MSCs) can grow to become either neurons or glial cells. It is, however, unclear whether or not there exists stems cells which can differentiate into neurons in the blood during the early stages of postnatal life. Methods : Human cord blood stem cells were prepared from human placenta after full term delivery. To induce neuronal differentiation of stem cells, ${\beta}$-mercaptoethanol was treated. To confirm the neuro-glial characteristics of differentiated stem cells, immunocytochemical stain for NeuN, neurofilament, glial fibrillary acidic protein(GFAP), microtubule associated protein2(MAP2) was performed. RT-PCR was performed for detecting nestin mRNA and MAP2 mRNA. Results : We showed in this experiment that neuro-glial markers(NeuN, neurofilament, MAP2, GFAP) were expressed and axon-like cytoplasmic processes are elaborated in the cultured human cord blood stem cells prepared from new born placenta after full term delivery. Nestin mRNA was also detected in fresh cord blood monocytes. Conclusions : These results suggest that human cord blood derived stem cells may be potential sources of neurons in early postnatal life.

  • PDF

Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells

  • Lin, Liangbo;Qiu, Quanhe;Zhou, Nian;Dong, Wen;Shen, Jieliang;Jiang, Wei;Fang, Ji;Hao, Jie;Hu, Zhenming
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.179-184
    • /
    • 2016
  • Bone morphogenetic protein 9 (BMP9) is a potent inducer of osteogenic differentiation of mesenchymal stem cells. The Wnt antagonist Dickkopf-1 (Dkk1) is involved in skeletal development and bone remodeling. Here, we investigated the role of Dkk1 in BMP9-induced osteogenic differentiation of MSCs. We found that overexpression of BMP9 induced Dkk1 expression in a dose-dependent manner, which was reduced by the P38 inhibitor SB203580 but not the ERK inhibitor PD98059. Moreover, Dkk1 dramatically decreased not only BMP9-induced alkaline phosphatase (ALP) activity but also the expression of osteocalcin (OCN) and osteopontin (OPN) and matrix mineralization of C3H10T1/2 cells. Furthermore, exogenous Dkk1 expression inhibited Wnt/β-catenin signaling induced by BMP9. Our findings indicate that Dkk1 negatively regulates BMP9-induced osteogenic differentiation through inhibition of the Wnt/β-catenin pathway and it could be used to optimize the therapeutic use of BMP9 and for bone tissue engineering.

Study on the simplifying antibody cocktail technique for isolation of human mesenchymal stromal cells (hMSCs) (사람 Mesenchymal stromal cell(hMSC) 분리를 위한 간소화된 방법에 대한 연구)

  • Park, Jung-Hyun;Kim, Kyoung-Hwa;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.93-100
    • /
    • 2004
  • 많은 연구들에서 hMSC를 얻기 위해 centrifugation, fluoroscence activated cell sorter(FACS), magnetic activated cell sorter(MACS)가 이용되어져 왔다. 그러나 centrifugation만을 이용한 경우 순도가 떨어지며 FACS나 MACS의 경우에는 비용, 시간이 많이 드는 단점이 있다. 따라서 이 연구에서는 antibody cocktail을 이용하여 hMSC를 좀더 쉽게 얻어내는 방법에 대해 알아보았다. 사람의 골반에서 12G의 바늘을 이용하여 골수를 흡입한 후 heparin이 들어있는 시험관에 넣고 처리과정을 시행하기 전에 냉장고에 보관하며 가능한 한 빨리 처리 과정을 실시한다. 얻은 골수에 적당량의 RosetteSep( Stemcell Technologies)을 첨가한 후 실온에서 20분간 반응시킨다. 그 후 적당량의 Ficoll-paque위에 골수와 RosetteSep의 혼합물을 섞이지 않게 올리고 원심분리를 이용하여 원하는 세포층을 얻어낸다. 이 세포층을 따로 분리한 뒤 배양한다. 배양 시 세포가 80%이상 차기 전에 계속 passage를 시행하며 배양한다. 이는 세포가 밀도가 높아져 원치 않는 세포로 분화되는 것을 막기 위함이다. 배양된 세포가 다양한 분화능력을 가지고 있는지 알아보기 위해 세 가지로 분화를 유도하였다. 적절한 배지와 적절한 환경에서 배양함으로써 얻어진 세포를 osteoblast, chondroblast, adipocyte로 분화를 유도하였다. 분화된 세포가 원하는 형질의 세포로 분화되었는지를 확인하기 위하여 osteoblast의 경우 alizarin red staining, alkaline phosphatase activity, chondroblast의 경우 toluidine blue staining, adipocyte의 경우 Oil-Red-O staining으로 염색하여 분화를 확인하였다. 분리해낸 세포는 각각 세 가지 세포로 분화가 되었으며 이는 RosetteSep이 hMSC를 성공적으로 분리해냈다는 것을 보여준다. 그러나 모든 세포가 분화를 보이지는 않았으며 따라서 hMSC의 순도를 높이기 위한 연구가 더 필요하다. RosetteSep을 이용하면 다른 방법들 보다 쉽게 hMSC를 얻을 수 있으나 기존의 방법과 순도의 측면에서 더 비교할 필요가 있다.

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Steroid Effects on Cell Proliferation, Differentiation and Steroid Receptor Gene Expression in Adult Bovine Satellite Cells

  • Lee, Eun Ju;Choi, Jinho;Hyun, Jin Hee;Cho, Kyung-Hyun;Hwang, Inho;Lee, Hyun-Jeong;Chang, Jongsoo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.501-510
    • /
    • 2007
  • The present study was conducted to establish primary bovine muscle satellite cell (MSC) culture conditions and to investigate the effects of various steroid hormones on transcription of the genes involved in muscle cell proliferation and differentiation. Of three different types of proteases (type II collagenase, pronase and trypsin-EDTA) used to hydrolyze the myogenic satellite cells from muscle tissues, trypsin-EDTA treatment yielded the highest number of cells. The cells separated by hydrolysis with type II collagenase and incubated on gelatin-coated plates showed an enhanced cell attachment onto the culture plate and cell proliferation at an initial stage of cell growth. In this study, the bovine MSCs were maintained in vitro up to passage 16 without revealing any significant morphological change, and even to when the cells died at passage 21 with decreased or almost no cell growth or deformities. When the cells were incubated in a steroid-depleted environment (DMEM(-)/10% CDFBS (charcoal-dextran stripped FBS)), they grew slowly initially, and were widened and deformed. In addition, when the cells were transferred to an incubation medium containing steroid (DMEM(+)/10% FBS), the deformed cells resumed their growth and returned to a normal morphology, suggesting that steroid hormones are crucial in maintaining normal MSC morphology and growth. The results demonstrated that treatments with 19-nortestosterone and testosterone significantly increased AR gene expression (p<0.05), implying that both testosterone and 19-nortestosterone bind with AR and that the hormone bound-AR complex up-regulates the genes of its own receptor (AR) plus other genes involved in satellite cell growth and differentiation in bovine muscle.

Mater-Slave Type Two DC-DC Converters Paralldl Operation Using a Single Current Sensor (단일 전류센서를 사용한 마스터-슬레이브 전류 분배형 2개의 DC-DC 컨버터 병렬운전)

  • 손승찬;박상은;정민재;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.184-191
    • /
    • 2000
  • We discussed load CUlTent sharing for Master/Slave convertedMSC) type two DC-DC Converters parallel operation using a single current sensor method. In the conventional method, two CTs have been used to share t the load CUlTent equally with two coηverters‘ This paper presents a novel load CUlTent distribution method u using a single CUlTent sensor that can share load CUlTent effectively with only one CT in the Master-Slave C conveη:ers(MSCs) type. To confirm parallel operational performance of proposed DC-DC converters parallel operation, two experimental prototype converters were designed, implemented and experimented under three a arbitrary conditions. A load cur‘rent shahring perforrnance of the proposed method was compared with that of a c conventional peak CUt${\gamma}$ent method requmng two CTs. Those experimental results show that load cUlTent s sharing performance of paralleled two converters using a single CUlTent sensor was good and operated as well a as conventional method (ex, Pe밟 CUlTent Method)

  • PDF

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • Proceedings of the KSLP Conference
    • /
    • 2003.11a
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells

  • Hyun, Sun-Yi;Lee, Ji-Hye;Kang, Kyung-Jung;Jang, Young-Joo
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.550-557
    • /
    • 2017
  • The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by $TGF-{\beta}1$ was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by $TGF-{\beta}1$ was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.