• Title/Summary/Keyword: MSC(multi-spectral camera)

Search Result 61, Processing Time 0.028 seconds

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

Development of High Speed Satellite Data Acquisition System

  • Choi, Wook-Hyun;Park, Sang-Jin;Seo, In-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.280-282
    • /
    • 2003
  • The downlink data rates of the space-born payloads such as high-resolution optical cameras, synthetic aperture radars (SAR) and hyper-spectral sensors are being rapidly increased. For example, the image transmission rates of KOMPSAT-2 MSC(Multi-Spectral Camera) is 320Mbps even if on-board image compression scheme is used.[1] In the near future, the data rates are expected to be a level 500${\sim}$600Mbps because the required resolution will be higher and the swath width will be increased. This paper describes many techniques they enable 500Mbps data receiving and archiving system.

  • PDF

QUICK-LOOK TEST OF KOMPSAT-2 FOR IMAGE CHAIN VERIFICATION

  • Lee Eung-Shik;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.509-511
    • /
    • 2005
  • KOMPSAT -2 equipped with an optical telescope(MSC) will be launched in this year. It can take images of the earth with push-broom scanning at altitude 685Km. Its resolution is 1m in panchromatic channel with a swath width of 15 km After the MSC is tested and the performance is measured at instrument level, it is installed on satellite. The image passes through the electro-optical system, compression and storage unit and fmally downlink sub-systems. This integration procedure necessitates the functional test of all subsystems participating in the image chain. The objective of functional test at satellite level(Quick Look test) is to check the functionality of image chain by real target image. Collimated moving image is input to the EOS in order to simulate the operational environments as if KOMPSAT -2 is being operated in orbit. The image chain from EOS to data downlink subsystem will be verified through Quick Look test. This paper explains the Quick Look test of KOMPSAT -2 and compares the taken images with collimated input ones.

  • PDF

KOMPSAT-2 위성의 요각 계산방법 연구

  • Kim, Jong-Ah;Kang, Keum-Sil;Jang, Young-Jun;Yong, Sang-Soon;Kang, Song-Doug;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • In order to get the high resolution satellite image, MSC has TDI function in the KOMPSAT-2. So it is required to control the yaw angle of the attitude as operation concepts of KOMPSAT-2. This study was to explain the TDI function, to set up the geometric equation to satisfy the condition, and finally to determine the equation of yaw angle. The calculating program was developed and simulated with orbit and imaging attitude as input data, and the results were compared with the yaw steering values calculated in the on-board computer.

  • PDF

Video data output system design for CEU (camera electronic unit) of satellite

  • Park, Jong-Euk;Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1118-1120
    • /
    • 2003
  • In MSC(Multi-spectral camera ), the incoming light is converted to electronic analog signals by the CCD(charge coupled device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the FPE(Focal plane electronics ). The digital data is transmitted to the PMU for pre-processing to correct for nonuniformity, to partially reorder the pixel stream and to add header data for identification and synchronization In this paper, the video data streams is described in terms of hardware.

  • PDF

The Implementation of Communication Unit for KOMPSAT-II

  • Lee Sang-Taek;Lee Jong-Tae;Lee Sang-Gyu;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.457-459
    • /
    • 2004
  • The Channel Coding Unit (CCU) is an integral component of Payload Data Transmission System (PDTS) for the Multi-Spectral Camera (MSC) data. The main function of the CCU is channel coding and encryption. CCU has two channels (I & Q) for data processing. The input of CCU is the output of DCSU (Data Compression & Storage Unit). The output of CCU is the input of QTX which modulate data for RF communication. In this paper, there are the overview, short H/W description and operation concept of CCU.

  • PDF

The Structure and Operation of KOMPSAT-II Memory (다목적실용위성 2호 메모리 구조와 운영)

  • 이종태;이상규;이상택;이도경
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.421-424
    • /
    • 2003
  • The KOMPSAT-II has a MSC(Multi-Spectral Camera) payload for earth observatory. The image data acquired during the pass over the Korean Peninsula can be sent to the ground station directly. But the image data out of the contact range should be stored temporally for later transmission. The KOMPSAT-II has a device for this purpose called the DCSU(Data Compression and Storage Unit) and the DCSU also performs compression functions for saving storage space and transmission time to send image data to the ground station. In this paper, we'd like to introduce the DCSU memory structures and operation.

  • PDF

인공위성에 의한 해양오염 감시 시스템 설계

  • Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.23-24
    • /
    • 2009
  • 허베이스피리트호 원유유출 사고는 2007년 12월7일 아침 7시6분경 서해안 만리포 북서쪽 10km 해상에서 크레인을 적재한 1만1800t급 바지선이 정박 중인 홍콩 선적 유조선 허베이 스피리트호(14만6000t급)와 부딪치면서 발생했다. 이와 같은 기름 유출 사고의 경우, 유출 범위를 정확하게 이해하는 것이 중요하다. 여기서는 위 사고 기간에 얻어진 인공위성 자료를 이용하여 기름 유출을 탐지하기 위한 연구결과를 소개한다. 광학과 마이크로파데이터에 대해 유출 범위의 계산 및 해석 알고리듬에 대한 현재까지의 결과를 소개한다. 광학데이터로는 아리랑 2호(다목적실용위성 2호, KOMPSAT II)) MSC(Multi Spectral Camera)자료가 사용되었으며, 합성개구레이더로는 ENVISAT ASAR, TerraSAR-X 및 ALOS PALSAR의 자료가 사용되었다.

  • PDF

OIL SPILL DETECTION AND MONITORING BY HEBEI SPIRIT DISASTER USING SATELLITE DATA (허베이 스피리트호 유류 유출 탐지 연구)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.125-127
    • /
    • 2008
  • 허베이스피리트호 원유유출 사고는 2007년 12월7일 아침 7시6분경 서해안 만리포 북서쪽 10km 해상에서 크레인을 적재한 1만1800t급 바지선이 정박 중인 흥콩 선적 유조선 허베이 스피리트호(14만6000t급)와 부딪치면서 발생했다. 이와 같은 기름 유출 사고의 경우, 유출 범위를 정확하게 이해하는 것이 중요하다. 여기서는 위 사고 기간에 얻어진 인공위성 자료를 이용하여 기름 유출을 탐지하기 위한 연구결과를 소개한다. 광학과 마이로파영상에 대해 유출 범위의 계산 및 해석 알고리듬에 대한 현재까지의 결과를 소개한다. 광학영상으로는 아리랑 2호 (다목적 실용위성 2호, KOMPSAT II) MSC(Multi Spectral Camera)자료가 사용되었으며, 합성개구레이더로는 ENVISAT ASAR, TerraSAR-X 및 ALOS PALSAR의 자료가 사용되었다.

  • PDF

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF