• Title/Summary/Keyword: MRI magnet

Search Result 84, Processing Time 0.023 seconds

A Study on the Architectural Planning of the Magnet Resonance Imaging Unit in General Hospital (종합병원 자기공명단층촬영유니트에 관한 건축계획적 연구)

  • Yun Woo-Yong;Chai Choul-Gyun
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.4 s.57
    • /
    • pp.89-96
    • /
    • 2006
  • Magnetic Resonance Imaging (MRI) scanner is the device to draw an image of conditions and the spread of various tissue in the body. It is used by making the patient into rounded superconductor and using high frequency which cause resonances. It uses superconduction magnet and high frequency that is non-ionizing radiation so can acquire biochemical, physical, and functional information of tissue. It is also very useful because it can scan tomography from many different angles to diagnose disease of a nervous system, the heart, and a skeletal structure. It also has advantages of that there is no risk of radiation exposure and the ability of observation on organizations such as brains, livers and the spinal cord of people. Since these features, the rate of use has been increased accordingly more considerations of the security are required when it plans. The weight of devices and the cover problem of the strong magnetic field which is occurred by magnetic resonance at the time of diagnosis can cause very important structure problems and architectural condition. That also the recent tendency which needs stronger equipment means that planning of the MRI unit should generally aim at purposing of the proximity for the device maintenance and up-grade and of further expansion. However there are not enough studies and data on the magnet resonance imaging in domestic hospitals. According to these reasons, this study has an object of indicating basic data on MRI unit plan standard and alternative proposals.

Fabrication and Test of Persistent Current Switch for HTS Magnet System

  • Hyoungku Kang;Kim, Jung-Ho;Jinho Joo;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.92-96
    • /
    • 2003
  • This paper deals with the characteristics of persistent current switch (rCS) system fer applied HTS magnet system. To apply the high-Tc superconductor in superconducting machine such as motror, generator, MAGLEV, MRI, and NMR, the study on high-Tc superconducting persistent current mode must be performed. In this experiment, the PCS system consists otd superconducting magnet, PCS and magnet power supply. The superconducting magnet was fabricated by connecting four double pancake coils (DPCs) in series. The PCS was inductive double pancake coil type and heated up by the SUS 303L tape heater. The optimal length of PCS was calculated and thermal quench state of PCS was simulated by using finite element method(FEM) and compared with experimental results. The optimal energy to normalize the PCS was calculated and introduced. Finally, the persistent current was observed with respect to various ramping up rate and magnitude of charging current.

Detection of Neuronal Activity by Motion Encoding Gradients: A Snail Ganglia Study

  • Park, Tae-S.;Park, Ji-Ho;Cho, Min-H.;Lee, Soo-Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.24-28
    • /
    • 2007
  • Presuming that firing neurons have motions inside the MRI magnet due to the interaction between the neuronal magnetic field and the main magnetic field, we applied motion encoding gradients to dissected snail ganglia to observe faster responding MRI signal than the BOLD signal. To activate the snail ganglia in synchronization with the MRI pulse sequence, we used electrical stimulation with the frequency of 30 Hz and the pulse width of 2s. To observe the fast responding signal, we used the volume selected MRI sequence. The magnetic resonance signal intensity, measured with 8 ms long motion encoding gradient with a 20mT/m gradient strength, decreased about $3.46{\pm}1.48%$ when the ganglia were activated by the electrical stimulation.

Design and Test Results of an Actively Shielded Superconducting Magnet for Magnetic Resonance Imaging

  • Jin, Hong-Beom;Ryu, Kang-Sik;Oh, Bong-Hwan;Ryu, Kyung-Woo;Jeoun, In-Young
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.95-105
    • /
    • 1997
  • In this paper, we have studied about design and fabrication of the actively shielded superconducting MRI magnet. Nonlinear optimization methods are usually used to find optimum coil configurations. However the selection of initial coil configurations is very difficult. In case bad initial data are used, it is even impossible to find optimum coil configurations which satisfy predefined constraints. We have developed computer optimization program which consists of two steps. Initial coil configurations are easily selected through linear optimization in the first step and optimum coil configurations are found through nonlinear optimization in the second step. We have also studied about superconducting shim coils to cancel error fields caused by coil fabrication errors. Many researchers published design concepts of shim coil. However all these studies are for shim coil design using filamentary coils with single turn, Shim coils with multi-turns should be used to produce enough field strength to cancel error fields. We have developed computer program for the design of shim coils which have proper thickness and length. An actively shielded superconducting MRI magnet with a small warm bore was fabricated and four sets of superconducting shim coils were equipped. The magnetic field distributions were measured and field correction was carried out using shim coils.

  • PDF

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

The Study on the Superconducting MRI Magnet of 68 cm in Room Temperature Bore (68 cm 상온 보아를 갖는 MRI용 초전도마그네트에 관한 연구)

  • Jin, H.B.;Oh, B.H.;Cho, J.W.;Oh, S.S.;Kwon, Y.K.;Ha, D.W.;Lee, E.Y.;Kim, H.J.;Kim, O.K.;Choi, B.J.;Ryu, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.142-146
    • /
    • 1996
  • In this paper, we present the main research results on the 2 Tesla class - superconducting MRI magnet which we have developed. Multi section type superconducting MRI main coil and various superconducting shims were designed and fabricated for obtaining the high field homogeneity, which is requested in the MR imaging. After assembling the magnet with room temperature bore cryostat field homogenity has been measured and analyzed by NMR field mapping system. According to this, field homogeneity of 22 ppm / 30 cm dsv was confirmed.

  • PDF

Magnet applications of HTS wires

  • Oh, Sang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.27-34
    • /
    • 2000
  • HTS wires processed by PIT method are now available for magnet applications. But, those wires can not be used over 40 K due to weak link. This leads to necessity of development of coated conductor which can retain high $J_c$ at high field in liquid nitrogen. In this paper, various technical issues and the R&D status for both PIT wires and coated conductor were discussed. The difference of coated conductor's processes were also investigated and summarized. Various requirements for a design of HTS magnets were discussed. Anisostropic $J_c$ property with respect to magnetic field was considered to determine the coil's critical current. Low n value is a critical parameter to degrade a field stability with respect to time for a persistent mode HTS magnet. The relation between the margin of operation current and n value was investigated. Prototype HTS magnets with PIT wires are being developed for various applications such as crystal growth, MRI, magnetic separator and etc. HTS magnets will come into wide use in various fields of industries if the HTS wires with a low performance cost is developed.

  • PDF

The Graphical User Interface Design for Optimal MRI Operation (MRI 시스템의 최적화 운용을 위한 GUI 디자인)

  • Moon, J.Y.;Kang, S.H.;Kim, K.S.;Kim, J.S.;Im, H.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.235-238
    • /
    • 1997
  • The Graphical User Interface (GUI) software is developed for 0.3 Tesla Permanent Magnet Resonance Imaging (MRI) system and the state of art of designing GUI system is discussed in this paper. The Object-Oriented concepts are applied for designing GUI software utilizing Interbase ODBC Database layer. Also, Multimedia concepts such as voice, sound and music are integrated in GUI system to enhance the efficiency of MRI operation.

  • PDF

MRI-guided Wire Localization Open Biopsy is Safe and Effective for Suspicious Cancer on Breast MRI

  • Wang, Hai-Yi;Zhao, Yu-Nian;Wu, Jian-Zhong;Wang, Zheng;Tang, Jing-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1715-1718
    • /
    • 2015
  • Background: Magnetic resonance imaging of breast, reported to be a high sensitivity of 94% to 100%, is the most sensitive method for detection of breast cancer. The purpose of this study was to investigate our clinical experience in MRI-guided breast lesion wire localization in Chinese women. Materials and Methods: A total of 44 patients with 46 lesions undergoing MRI-guided breast lesion localization were prospectively entered into this study between November 2013 and September 2014. Samples were collected using a 1.5-T magnet with a special MR biopsy positioning frame device. We evaluated clinical lesion characteristics on pre-biopsy MRI, pathologic results, and dynamic curve type baseline analysis. Results: Of the total of 46 wire localization excision biopsied lesions carried out in 44 female patients, pathology revealed fourteen malignancies (14/46, 30.4%) and thirty-two benign lesions (32/46, 69.6%). All lesions were successfully localized followed by excision biopsy and assessed for morphologic features highly suggestive of malignancy according to the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) category of MRI (C4a=18, C4b=17, C4c=8,C5=3). Of 46 lesions, 37 were masses and 9 were non-mass enhancement lesions. Thirty-two lesions showed a continuous kinetics curve, 11 were plateau and 3 were washout. Conclusions: Our study showed success in MRI-guided breast lesion wire localization with a satisfactory cancer diagnosis rate of 30.4%. MRI-guided wire localization breast lesion open biopsy is a safe and effective tool for the workup of suspicious lesions seen on breast MRI alone without major complications. This may contribute to increasing the diagnosis rate of early breast cancer and improve the prognosis in Chinese women.