• 제목/요약/키워드: MR Mount

검색결과 46건 처리시간 0.025초

반능동형 MR유체 마운트의 성능제어 (Control Performance for Semi-active Mount Featuring Magneto-Rheological Fluid)

  • 김옥삼;박우철;이현창
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the semi active mount featuring Magneto rheological fluid(MR Fluid) is proposed. MR fluid is suspension of micro sized magnetizable particles in a fluid medium, and its apparent viscosity can be varied by the applied strength of magnetic field. When the controllable MR fluid is applied to mechanical devices, the devices provide simple, rapid response interfaces between electronic controls and mechanical systems. The MR fluid is applied in the conventional fluid mount for improving its performance of the mount's isolation effect. A appropriate size of the MR mount is designed and manufactured on the basis of Bingham model of MR fluid. In addition, the field dependent damping forces of MR mount are evaluated with respect to the input frequency variation.

  • PDF

MR유체를 이용한 엔진마운트의 슬라이딩모드제어 (A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid)

  • 이동길;안영공;정석권;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

MR유체 엔진마운트의 성능해석 (Performance Analysis of a Magneto-Rheological Fluid Engine Mount)

  • 안영공;김원철;양보석
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.457-466
    • /
    • 1998
  • This paper evaluates the performance of a Magneto-Rheological (MR) fluid mount. The mount incorporates MR fluid in a conventional fluid mount to open and closed the inertia track between the fluid chambers of the mount. It is shown that such switching of the inertia track improves the mount's isolation effect, by eliminating the large transmissibility peak that commonly exists at frequencies higher than the notch frequency for conventional fluid mounts. The switching frequencies of the MR mount is evaluated, based on the parameters of the mount. A simple control scheme for switching the mount between the open and closed states is proposed, and the performance of the controlled mount is compared with conventional mounts. A sensitivity analysis is conducted to evaluate the effect of parameter errors in estimating the switching frequencies and mount performance. The results show that the switching frequencies can be accurately determined from mount parameters that are easily measured or estimated.

  • PDF

MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

MR 유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

MR 유체를 이용한 가변 감쇠 마운트의 모델화 (A Modeling of a Variable-damping Mount Using MR Fluid)

  • 안영공;;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1338-1343
    • /
    • 2000
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of $1{\sim}20mm$ in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of $20{\sim}40$ vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and its performance was investigated experimentally. Furthermore, the properties of the MR Mount on experimental Study were explained analytically by mechanical model of the MR mount.

  • PDF

MR유체를 이용한 다방향 제진형 마운트의 응답특성 (Response Property of Multi-directional Mount Using Magneto-Rheological Fluid)

  • 안영공;신동춘;양보석;이일영;김동조
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

통합제진마운트용 MR 댐퍼의 설계 및 성능 평가 (Design and Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;임승구;최승복;김철호;우제관
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1046-1051
    • /
    • 2010
  • This paper presents design and performance evaluation of magnetorheological(MR) damper for integrated isolation mount. The MR damper needs two functions for the integrated isolation mount. The one is vibration absorption and the other is isolation of vibration transmission. For vibration absorption, the MR damper requires wide damping force range. And for isolation of vibration transmission, the friction of MR damper needs to be eliminated. In order to achieve this goal, a novel type of MR damper is originally designed in this work. Subsequently, the MR damper is mathematically modeled and its damping force characteristics are evaluated. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated. From the result, this paper evaluates the performance of MR damper for integrated isolation mount.

MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어 (Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS)

  • 이동영;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF