• Title/Summary/Keyword: MR 조영제

Search Result 76, Processing Time 0.022 seconds

Effects of CT Contrast Medium on the Relaxation Rate of MR Contrast Medium (CT 조영제가 MR 조영제의 이완율에 미치는 영향)

  • Kwon, Soon-Yong;Kang, Chung-Hwan;Jeong, Hyeon Keum;Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.103-107
    • /
    • 2018
  • In MR, the iodine CT contrast medium reduces the T1 and T2 relaxation times of the substance, resulting in a change in signal intensity. This study aimed to measure the relaxation rate of MR contrast medium with or without diluting CT contrast medium and analyzed the effect of CT contrast medium. Undiluted Gadoteridol solution was diluted with saline to prepare MR contrast medium phantoms with various levels of Gadoteridol concentrations. Moreover, undiluted Iomeprol was mixed with the prepared MR contrast medium phantoms at 1:1 ratio to make MR contrast medium phantoms with containing CT contrast medium for the experiment. T1 and T2 mappings were conducted to quantitatively evaluate the relaxation time and relaxation rate of these phantoms. The results showed that the T1 and T2 relaxation time and relaxation rate of MR contrast medium diluted with CT contrast medium were significantly (p<0.05) shorter than those of MR contrast medium not diluted with CT contrast medium. The results of this study imply that, when MR contrast medium shall be used after injecting CT contrast medium, CT contrast medium should be discharged enough. Moreover, it would be desirable to conduct CT test after taking MRI test in order to reduce the effects of CT contrast medium on MR contrast medium.

Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent (1.0 mol 과 0.5 mol MR조영제의 정량적 신호강도 비교분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Jang, Geun Yeong;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.134-141
    • /
    • 2015
  • The purpose on this research is quantitatively comparing and analyzing signal intensity of 1.0mol and 0.5mol contrast agent. For this study, two MR phantoms were produced. One of them is used with 1.0mol Gadobutrol. The other is used with 0.5mol Gadoteridol. These two phantoms respectively have been scanned by SE T1 sequence which is used to get a general contrast-enhanced image in 1.5T MRI and 3D FLASH sequence which is used as enhanced angio MRI. Signal intensity was measured by scanned images as per contrast agent dilution ratio. The results were as follow: RSP(Reaction Starting Point) of the two sequences(2D SE, 3D FLASH) was respectively 6.0%, 60.0% in 0.5mol contrast and 2.0%, 20.0% in 1.0mol contrast, which means in 0.5mol contrast, RSP was formed faster than the one in 1.0mol contrast. MPSI was respectively 1358.8[a.u], 1573[a.u] in 0.5mol contrast and 1374[a.u], 1642.4[a.u] in 1.0mol contrast, which means 0.5mol contrast's MPP (0.4%, 10.0%) was formed faster than 1.0mol contrast's MPP (0.16%, 1.8%). Lastly, RA as per contrast agent dilution ratio was 27.4%, 11.8% wider in 0.5mol contrast(20747.4[a.u], 23204.6[a.u]) than in 1.0mol contrast(12691.9[a.u], 20747.4[a.u]). According to the study, we are able to assure that signal reaction time of 1.0mol contrast is slower than the one of 0.5mol contrast in contrast-enhanced MRI at two different sequences(2D SE, 3D FLASH). Furthermore, owing to the fact that there are not any signal intensity differences between 1.0mol and 0.5mol contrast, it is not true that high concentration gadolinium MR contrast agent does not always mean high signal intensity in MRI.

Usefulness of Superparamagnetic Iron Oxide (SPIO) as a Negative Oral Contrast Agent in MR Cholangiopancreatography (자기공명 담관췌장초영술에서 음성 경구 조영제로 사용한 초상자성 산화철 제재의 유용성)

  • 이정민;송원규;이종덕
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • Purpose : To evaluate value of superparamagnetic iron oxide (SPIO) as a negative oral contrast agent in MR cholangiopancreatography (MRCP). Materials and methods : Forty-eight patients with suspected biliary tract or pancreatic diseases and six healthy volunteers were enrolled in this study. All MR images were obtained using a 1.5 T MR unit. MR-CP using fat-suppressed half-Fourier acquisition single-shot turbo spin echo (HASTE) and turbo spin echo (TSE) techniques were performed and reconstructed with maximal intensity projection (MIP). To determine the most optimal concentration of SPIO to obliterate the high signal intensity of water, a phantom experiment was conducted with various concentrations of SPIO-water mixture. Two radiologists evaluated pre- and postcontrast MRCPS. The contrast enhancement was assessed on the basis of loss of signal intensity in the stomach and duodenum. Results : In the phantom experiment, a significant increase of percentage of signal intensity loss (PSIL) occurred in concentration of 22.4 ugFe/ml (Feridex1 ml diluted with water 500 ml). Postcontrast MRCP showed an improved image quality compared with precontrast images. The rate of improvement in the diagnosis of diseases of the common bile duct and pancreatic duct was 25% (12/48). Conclusion : In patients with suspected biliary tract and pancreatic diseases, the SPIO is useful as a negative oral contrast agent for MRCP and provides an improvement of image quality.

  • PDF

Quantitative Comparison of 1H-MRS Spectra Depending on the Paramagnetic Gadolinium Contrast Agent(GBCA) Injection (가돌리늄 조영제 주입에 따른 1H-MRS spectrum의 정량적 비교)

  • Choi, Kwan-Woo;Son, Soon-Yong;Yoo, Beong-Gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.589-595
    • /
    • 2017
  • This study evaluated the effect of gadolinium contrast agents on the spectrum of metabolites during $^1H-MRS$ of brain and to investigate whether the contrast agents injected before MR spectroscopy significantly affect the estimated peaks of MRS. From January to May 2017, brain MR spectroscopy was performed on 30 patients to compare the spectrum before and after contrast injection of the brain white matter tissue. As a result, the spectrum of metabolites decreased after the paramagnetic contrast agents injected. However, it was not statistically significant which indicated that the use of contrast agent did not meaningfully affect the spectrum of metabolites. In conclusion, the use of the paramagnetic contrast before the acquisition of the spectroscopy may aid voxel positioning especially when it is difficult to determine the exact location of the lesion or the contrast is low.

The Synthesis and MR Properties of New Macromolecular MR Contrast Agent (새로운 거대분자 MR 조영제의 합성 및 MR 특성에 관한 연구)

  • 장용민;장영환;황문정;박현정;전경녀;이종민;배경수;강봉석
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Purpose : To evaluate the NMR relaxation properties and imaging characteristics of tissue-specificity for a newly developed macromolecular MR agent. Materials and methods : Phthalocyanine (PC) was chelated with paramagnetic ion, Mn.2.01g (5.2 mmol) of Phthalocyanine was mixed with 0.37g (1.4 mmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography (CHC13/CH3OH 98/2 v/v, Rf, 0.76) to obtain 1.04g (46%) of MnPC (molecular weight= 2000d). The $T1}T2$ relaxivity of MnPC was measured in 1.5T(64 MHz) MR using 0.1 mM MnPC. The MR image characteristics of MnPC was evaluated using spin-echo (TR/TE=500/14 msec) and gradient-echo (FLASH) (TR/TE=80/4 msec, flip angle=60) techniques in 1.57 MR scanner. The images of rabbit liver were obtained every 10 minutes up to 4 hours. To study the effect of concentration on image, 20 mM, 50 mM, 100 mM of MnPC were tested. Results : The relaxivities of MnPC at 1.5T(64MHz) were Rl=7.28 $mM^{-1}S^{-1},{\;}R2=55.56mM^{-1}S^{-1}$. Compared to the values of Gd-DTPA (Rl[=4.8 $mM^{-1}S^{-1})$], R2[=5.2 $mM^{-1}S^{-1}])$]), both T1/T2 relaxivities of MnPC were higher than those of Gd-DTPA. For both of SE and FLASH techniques, the contrast enhancement reached maximum at 10 minutes after bolus injection and the enhancement continued for more than 2 hours. When compared with small molecular weight liver agents such as Gd-EOB-DTPA, Gd-BOPTA and MnDPDP, MnPC was characterized by more prolonged enhancement time. The time course of MR images also revealed biliary excretion of MnPC. Conclusion : We developed a new macromolecular MR agent, MnPC. The relaxivities of MnPC were higher than those of small molecular weight Gd-chelate. Hepatic uptake and biliary excretion of MnPC suggests that this agent is a new liver-specific MR agent.

  • PDF

MR Contrast Agents and Molecular Imaging (MR조영제와 분자영상)

  • Moon, Woo-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.205-208
    • /
    • 2004
  • The two major classes of magnetic resonance (MR) contrast agents are paramagnetic contrast agents, usually based on chelates of gadolinium generating T1 positive signal enhancement, and super-paramagnetic contrast agents that use mono- or polycrystalline iron oxide to generate strong T2 negative contrast in MR images. These paramagnetic or super-paramagnetic complexes are used to develop new contrast agents that can target the specific molecular marker of the cells or tan be activated to report on the physiological status or metabolic activity of biological systems. In molecular imaging science, MR imaging has emerged as a leading technique because it provides high-resolution three-dimension maps of the living subject. The future of molecular MR imaging is promising as advancements in hardware, contrast agents, and image acquisition methods coalesce to bring high resolution in vivo imaging to the biochemical sciences and to patient care.

MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent (조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Purpose : A precise NMR technique for measuring the rate of water exchange and cell membrane permeability across the hepatocyte membrane using liver-specific MR contrast agent is described. Materials and Methods : The rat hepatocytes isolated by perfusion of the livers were used for the NMR measurements. All experiments were performed on an IBM field cycling relaxometer operating from 0.02MHz to 60 MHz proton Larmor frequency. spin-echo pulse sequence was empolyed to measure spin-lattice relaxation time, T1. The continuous distribution analysis of water proton T1 data from rat hepatocytes containing low concentrations of the liver specific contrast agent, Gd-EOB-DTPA, modeled by a general two compartment exchange model. Results : The mean residence time of water molecule inside the hepatocyte was approximately 250 msec. The lower limit for the permeability of the hepatocyte membrane was $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$. The CONTIN analysis, which seeks the natural distribution of relaxation times, reveals direct evidence of the effect of diffusive exchange. the diffusive water exchange is not small in the intracellular space in the case of hepatocytes. Conclusions : Gd-EOB-DTPA, when combined with continuous distribution analysis, provides a robust method to study water exchange and membrane permeability in hepatocytes. Water exchange in hepatocyte is much slower thatn that in red blood cells. Therefore, tissue-specific contrast agent may be used as a functional agent to give physiological information such as cell membrane permeability.

  • PDF

Changing mask timing reduces venous contamination in contrast enhanced MR Angiography of the head and neck (조영제 사용 후 혈관조영영상 획득 시, mask 영상의 획득 시점에 따른 정맥 신호의 감소)

  • Lee, ho-beom;Chung, mi-ae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.385-386
    • /
    • 2017
  • 진단을 위해 조영제를 연속해서 사용하는 검사는, 첫 번째 주입으로 인해 조영제가 영상에 미치는 효과를 고려해야 한다. 본 연구에서는 mask 영상의 획득 시점을 통해 이를 개선하고자, 관류영상 획득 후 조영영상을 감산하는 새로운 방법을 제시하여, 혈관 겹침의 원인이 정맥의 신호강도를 유의하게 감소시켰다. 따라서, 본 연구의 방법을 이용하면, 복잡한 재구성이나 추가적인 기법 없이도, 효율적으로 정맥신호를 제거 할 수 있어 유용하리라 사료된다.

  • PDF