• Title/Summary/Keyword: MR, experimental

Search Result 292, Processing Time 0.031 seconds

A Modeling of a Variable-damping Mount Using MR Fluid (MR 유체를 이용한 가변 감쇠 마운트의 모델화)

  • Ahn, Young-Kong;Tsuchiya, Takashi;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1338-1343
    • /
    • 2000
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of $1{\sim}20mm$ in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of $20{\sim}40$ vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and its performance was investigated experimentally. Furthermore, the properties of the MR Mount on experimental Study were explained analytically by mechanical model of the MR mount.

  • PDF

A study on the force control of a servo actuator with built-in MR Valve (MR 밸브 내장형 서보 액추에이터의 힘 제어에 관한 연구)

  • Ahn K.K.;Song J.Y.;Kim J.S.;Ahn Y.K.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A servo actuator with a valve using MR (Magneto-Rheological) fluid is proposed for fluid control systems. The MR fluid is well known as a functional fluid whose apparent viscosity is controlled by the applied magnetic field strength. The pressure in the MR cylinder can be controlled by the applied magnetic field strength. Good points of the MR cylinder are more simple, compact and reliable structure than a conventional oil hydraulic cylinder. The experimental results show that the MR cylinder could be used as a servo actuator.

  • PDF

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

A Study on MR Insert for Shock Wave Attenuation (MR Insert 의 충격저감 성능 연구)

  • 강병우;김재환;최승복;김경수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.121-126
    • /
    • 2001
  • This paper presents the experimental study for the reduction of transmitted shock waves in smart structures incorporating MR insert. MR fluid is filled within the two aluminum layers and two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of the shock wave. Pulse wave generated by the transmitter is transmitted to the receiver through the MR insert and the plate. By applying magnetic field to the MR insert, the amplitude of the transmitted shock wave is reduced remarkably. The attenuation performance is tested by changing the applied magnetic field on MR inserts in two ways: by changing angle of permanent rubber magnet from 90 to 5 with 5 decrements, by using electromagnet in which magnetic field is controllable. The propagating wave speed of MR insert is also investigated.

  • PDF

Frequency Estimation of Multiple Sinusoids From MR Method (MR 방법으로부터 다단 정현파의 주파수 추정)

  • 안태천;탁현수;이종범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.18-26
    • /
    • 1992
  • MR(Model Reduction) is presented in order to estimate the frequency of multiple sinusoids from the finite noisy data with the white or colored noises. MR, using the reduced rank models, is designed, appling the approximation of linear system to LP(Linear Prediction). The MR method is analyzed. Monte-carlo simulations are conducted for MR and Lp. The results are compared with in terms of mean, root-mean square and relative bias. MR eliminates effectevely the extremeous and exceptional poles appearing in LP and improves the accuracy of LP. Especially, MR gives promising results in short noisy measurements, low SNR's and colored noises. Power spectral density and angular frequency position are showed by figures, for examples. Finally, the new method is utilized to the communication and biomedical systems estimating the characteristics of the signal and the system identification modelling the dynamic systems from experimental data.

  • PDF

Dynamic Characteristics Analysis of A Magneto-Rheological Damper (MR 댐퍼의 동특성 해석)

  • Jeong, Hee-Kyung;Baek, Woon-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.222-227
    • /
    • 2002
  • MR(Magneto-rheological) fluid is smart fluid that can change its characteristics then magnetic fields are applied. Recently, many researches have been performed on this MR fluid for the application in a vareity of areas including automobile shock absorbers. This paper describes the design procedure of a MR damper and the analysis results of its dynamic characteristics. MR fluid in the magnetic field shows initial yield shear stress and increasing resistive viscosity with final saturation thereafter. Herschel-Bulkley model is used to simulate the flow characteristics of MR fluid and magnetic analysis is used to identify the magnetic property of the MR fluid in the orifice of the damper. The dynamic characteristics of the damper was predicted and compared with the experimental results for typical sinusoidal excitations.

  • PDF

A Small MR Brake for Force Feedback Devices (힘 반영 장치용 소행 MR 브레이크)

  • 김승종;조창현;이종민;황요하;김문상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.169-172
    • /
    • 2004
  • This paper proposes a new MR(magneto-rheological) brake utilizing composite modes of MR fluid. Its basic structure and design scheme are almost the same with the conventional MR brake, but for slots in a rotating disk or shell. The slots enable the proposed MR brake to use a new mode, so-called, ‘direct cutting chain mode’as well as shear mode, which results in increasing the braking force(almost 150% compared to the case without slots). Some experimental results show that the proposed MR brake provide the sufficient braking force to be adopted for small portable force feedback devices.

  • PDF

Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core (비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구)

  • Kim, K. B.;Cho, M. W.;Ha, S. J.;Cho, Y. K.;Song, K. H.;Yang, J. K.;Cai, Y.;Lee, J. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF