• Title/Summary/Keyword: MPEG-I Immersive Audio

Search Result 6, Processing Time 0.018 seconds

Standardization of MPEG-I Immersive Audio and Related Technologies (MPEG-I Immersive Audio 표준화 및 기술 동향)

  • Jang, D.Y.;Kang, K.O.;Lee, Y.J.;Yoo, J.H.;Lee, T.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.3
    • /
    • pp.52-63
    • /
    • 2022
  • Immersive media, also known as spatial media, has become essential with the decrease in face-to-face activities in the COVID-19 pandemic era. Teleconference, metaverse, and digital twin have been developed with high expectations as immersive media services, and the demand for hyper-realistic media is increasing. Under these circumstances, MPEG-I Immersive Media is being standardized as a technologies of navigable virtual reality, which is expected to be launched in the first half of 2024, and the Audio Group is working to standardize the immersive audio technology. Following this trend, this article introduces the trend in MPEG-I immersive audio standardization. Further, it describes the features of the immersive audio rendering technology, focusing on the structure and function of the RM0 base technology, which was chosen after evaluating all the technologies proposed in the January 2022 "MPEG Audio Meeting."

MPEG-I Immersive Audio Standardization Trend (MPEG-I Immersive Audio 표준화 동향)

  • Kang, Kyeongok;Lee, Misuk;Lee, Yong Ju;Yoo, Jae-hyoun;Jang, Daeyoung;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.723-733
    • /
    • 2020
  • In this paper, MPEG-I Immersive Audio Standardization and related trends are presented. MPEG-I Immersive Audio, which is under the development of standard documents at the exploration stage, can make a user interact with a virtual scene in 6 DoF manner and perceive sounds realistic and matching the user's spatial audio experience in the real world, in VR/AR environments that are expected as killer applications in hyper-connected environments such as 5G/6G. In order to do this, MPEG Audio Working Group has discussed the system architecture and related requirements for the spatial audio experience in VR/AR, audio evaluation platform (AEP) and encoder input format (EIF) for assessing the performance of submitted proponent technologies, and evaluation procedures.

A Study on Setting the Minimum and Maximum Distances for Distance Attenuation in MPEG-I Immersive Audio

  • Lee, Yong Ju;Yoo Jae-hyoun;Jang, Daeyoung;Kang, Kyeongok;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.974-984
    • /
    • 2022
  • In this paper, we introduce the minimum and maximum distance setting methods used in geometric distance attenuation processing, which is one of spatial sound reproduction methods. In general, sound attenuation by distance is inversely proportional to distance, that is 1/r law, but when the relative distance between the user and the audio object is very short or long, exceptional processing might be performed by setting the minimum distance or the maximum distance. While MPEG-I Immersive Audio's RM0 uses fixed values for the minimum and maximum distances, this study proposes effective methods for setting the distances considering the signal gain of an audio object. Proposed methods were verified through simulation of the proposed methods and experiments using RM0 renderer.

Spatial Audio Technologies for Immersive Media Services (체감형 미디어 서비스를 위한 공간음향 기술 동향)

  • Lee, Y.J.;Yoo, J.;Jang, D.;Lee, M.;Lee, T.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.13-22
    • /
    • 2019
  • Although virtual reality technology may not be deemed as having a satisfactory quality for all users, it tends to incite interest because of the expectation that the technology can allow one to experience something that they may never experience in real life. The most important aspect of this indirect experience is the provision of immersive 3D audio and video, which interacts naturally with every action of the user. The immersive audio faithfully reproduces an acoustic scene in a space corresponding to the position and movement of the listener, and this technology is also called spatial audio. In this paper, we briefly introduce the trend of spatial audio technology in view of acquisition, analysis, reproduction, and the concept of MPEG-I audio standard technology, which is being promoted for spatial audio services.

A Real Time 6 DoF Spatial Audio Rendering System based on MPEG-I AEP (MPEG-I AEP 기반 실시간 6 자유도 공간음향 렌더링 시스템)

  • Kyeongok Kang;Jae-hyoun Yoo;Daeyoung Jang;Yong Ju Lee;Taejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.213-229
    • /
    • 2023
  • In this paper, we introduce a spatial sound rendering system that provides 6DoF spatial sound in real time in response to the movement of a listener located in a virtual environment. This system was implemented using MPEG-I AEP as a development environment for the CfP response of MPEG-I Immersive Audio and consists of an encoder and a renderer including a decoder. The encoder serves to offline encode metadata such as the spatial audio parameters of the virtual space scene included in EIF and the directivity information of the sound source provided in the SOFA file and deliver them to the bitstream. The renderer receives the transmitted bitstream and performs 6DoF spatial sound rendering in real time according to the position of the listener. The main spatial sound processing technologies applied to the rendering system include sound source effect and obstacle effect, and other ones for the system processing include Doppler effect, sound field effect and etc. The results of self-subjective evaluation of the developed system are introduced.

A study on the measurement of changes in impulse response due to obstacles (장애물에 의한 충격응답 변화 실측에 대한 연구)

  • Jae-hyoun Yoo;Tae Jin Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.22-25
    • /
    • 2022
  • 본 논문에서는 인공적인 가상 환경에서 사실적인 충격응답을 제공할 수 있는 방법을 모색하기 위한 첫 단계로서 실제 청취 공간에서 충격응답을 획득하고 장애물이 존재할 때 그 충격응답이 어떻게 변화하는지 살펴보기 위하여 충격응답 변화 실측에 대한 실험 결과를 제시한다. 실험은 일상적인 공간으로서 한국전자통신연구원의 회의실과 휴게실에서 수행하였으며, 실험 결과 장애물의 존재에 따라 그리고 청취 위치에 따라 주파수 영역에서 차이점이 발생하는 것을 확인할 수 있었다. 향후 흡음률 등 장애물에 대한 물리적 정보를 조사, 분석하고 보다 더 다양한 공간과 위치에서 장애물에 대한 충격응답의 변화로부터, MPEG-I Immersive Audio 등의 애플리케이션에서 사실적인 공간감을 제공하기 위한 인공적인 충격응답을 가공 방법을 제안할 수 있을 것으로 기대한다.

  • PDF