• Title/Summary/Keyword: MPC(model predictive controller)

Search Result 49, Processing Time 0.027 seconds

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

Event-Triggered Model Predictive Control for Continuous T-S fuzzy Systems with Input Quantization (양자화 입력을 고려한 연속시간 T-S 퍼지 시스템을 위한 이벤트 트리거 모델예측제어)

  • Kwon, Wookyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1364-1372
    • /
    • 2017
  • In this paper, a problem of event-triggered model predictive control is investigated for continuous-time Takagi-Sugeno (T-S) fuzzy systems with input quantization. To efficiently utilize network resources, event-trigger is employed, which transmits limited signals satisfying the condition that the measurement of errors is over the ratio of a certain level. Considering sampling and quantization, continuous Takagi-Sugeno (T-S) fuzzy systems are regarded as a sector bounded continuous-time T-S fuzzy systems with input delay. Then, a model predictive controller (MPC) based on parallel distributed compensation (PDC) is designed to optimally stabilize the closed loop systems. The proposed MPC optimize the objective function over infinite horizon, which can be easily calculated and implemented solving linear matrix inequalities (LMIs) for every event-triggered time. The validity and effectiveness are shown that the event triggered MPC can stabilize well the systems with even smaller average sampling rate and limited actuator signal guaranteeing optimal performances through the numerical example.

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Vehicle Stabilization Using MPC Based on Nonlinear Tire Model (비선형 타이어모델 기반 MPC를 이용한 차량 안정화)

  • Song, Yuho;Kim, Hansu;Kim, Seungki;Kim, Youngwoo;Lee, Tae Hee;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.730-736
    • /
    • 2016
  • Recent research suggests the various applications of Model Predictive Control on vehicle systems. In numerous cases, nonlinear tire models such as the Magic Formula, which are highly complex and are more detailed than necessary, are used. This paper presents a nonlinear tire model that excludes the region of negative slope but expresses the nonlinear properties of tire well enough for tracking the lane of a racing course. The proposed inverse tire model can also be used to calculate the slip angle from the tire force. Thus, the model can be utilized to design the Model Predictive Controller.

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.

A Globally Stabilizing Model Predictive Controller for Neutrally Stable Linear Systems with Input Constraints

  • Yoon, Tae-Woong;Kim, Jung-Su;Jadbabaie, Ali;Persis, Claudio De
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1901-1904
    • /
    • 2003
  • MPC or model predictive control is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.

  • PDF

Model Predictive Control for Tram Charging and Its Semi-Physical Experimental Platform Design

  • Guo, Chujia;Zhang, Aimin;Zhang, Hang
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1771-1779
    • /
    • 2018
  • Modern trams with a super capacitor have gained a lot of attention in recent years due to its reliability, convenience, energy conservation and environmental friendliness. Because of its special charging characteristic, the traditional charging structure and control strategy cannot satisfy its charging requirements. This paper presents a new charging topology for fast charging modern trams with a super capacitor and it designs a controller using continuous control set model predictive control (CCS-MPC). There are three contributions in this paper. First, a new charging structure is designed and its mathematics model is derived. The cascade structure is adopted instead of the parallel structure to simplify the control process and to keep the rated power of the controllable part low. Second, a MPC control strategy is proposed to satisfy the charging characteristic. The optimal control signal can be obtained by solving the designed optimization problem. The optimal control signal is related to the discrete control action. In addition, mapping between the continuous control signal and the discrete control action is designed. Third, a semi-physical experimental platform is built to verify the proposed topology and control method. The simulation model and experiment platform are built to verify the correctness of the new structure and its control method. The results obtained show that the new topology can work effectively.

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

Event-triggered MPC for Adaptive Cruise Control System with Input Constraints (입력제한 조건을 가지는 순항 제어 시스템을 위한 이벤트-트리거 MPC)

  • Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • This paper presents an event-triggered model predictive controller for adaptive cruise control system with sampled and quantized-data. Unlike existing works, a longitudinal continuous-time model is used for the predictive control of the system. To efficiently utilize network resources, event-trigger scheme is employed, which allows limited sensor and actuator signal satisfying the condition that the measurement of errors is over the ratio of a trigger level. The proposed control gain is obtained by solving a convex problem satisfying several linear matrix inequalities at every sampling times. Simulation results are given to show the effectiveness of the proposed design method.