• Title/Summary/Keyword: MOSFET characteristics

Search Result 550, Processing Time 0.027 seconds

A Study on the Characteristics Comparison of Source/Drain Structure for VLSI in n-channel MOSFET (고 집적을 위한 n-channel MOSFET의 소오스/드레인구조의 특성 비교에 관한 연구)

  • 류장렬;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.60-68
    • /
    • 1993
  • Thw VLSI device of submicron level trends to have a low level of reliability because of hot carriers which are caused by short channel effects and which do not appear in a long-channel MOSFET operated in 5V. In order to minimize the generation of hot carrier, much research has been made into various types of drain structures. This study has suggested CG MOSFET (Concaved Gate MOSFET) as new drain structure and compared its electrical characteristics with those of the conventional MOSFET and LDD-structured MOSFET by making use of a simulation method. These three device were assumed to be produced by the LOCOS process and a computer-based analysis(PISCES-2B simulator) was carried out to verify the hot electron-resistant behaviours of the devices. In the present simulation, the channel length of these devises was 1.0$\mu$m and their DC characteristics, such as VS1DT-IS1DT curves, gate and substrate current, potential contours, breakdown voltage and electric field were compared with one another.

  • PDF

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity

  • Jang, Juneyoung;Choi, Pyung;Lyu, Hong-Kun;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • In this paper, the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector with high sensitivity in the 408 nm - 941 nm range are presented. High sensitivity is important for photodetectors, which are used in several scientific and industrial applications. Owing to its inherent amplifying characteristics, the GBT MOSFET-type photodetector exhibits high sensitivity. The presented GBT MOSFET-type photodetector was designed and fabricated via a standard 0.18 ㎛ complementary metal-oxide-semiconductor (CMOS) process, and its characteristics were analyzed. The photodetector was analyzed with respect to its width to length (W/L) ratio, bias voltage, and incident-light wavelength. It was confirmed experimentally that the presented GBT MOSFET-type photodetector has over 100 times higher sensitivity than a PN-junction photodiode with the same area in the 408 nm - 941 nm range.

Electric Characteristics and Modeling of Asymmetric n-MOSFETs for Improving Packing Density (집적도 향상을 위한 비대칭 n-MOSFET의 전기적 특성 및 모델링)

  • Gong, Dong-Uk;Lee, Jae-Seong;Nam, Gi-Hong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.7
    • /
    • pp.464-472
    • /
    • 2001
  • Asymmetric n-MOSFET's for improving packing density have been fabricated with 0.35 ${\mu}{\textrm}{m}$ CMOS process. Electrical characteristics of asymmetric n-MOSFET show a lower saturation drain current and a higher linear resistance compared to those of symmetric devices. Substrate current of asymmetric MOSFET is lower than that of symmetric devices. Asymmetric n-MOSFET's have been modeled using a parasitic resistance associated with abnormally structured drain or source and a conventional n-MOSFET model. MEDICI simulation has been done for accuracy of this modeling. Simulated values of reverse as we11 as forward saturation drain current show good agreement with measured values for asymmetric device.

  • PDF

Optimal Design of Trench Power MOSFET for Mobile Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.195-198
    • /
    • 2017
  • This research analyzed the electrical characteristics of an 80 V optimal trench power MOSFET (metal oxide field effect transistor) for mobile applications. The power MOSFET is a fast switching device in fields with low voltage(<100 V) such as mobile application. Moreover, the power MOSFET is a major carrier device that is not minor carrier accumulation when the device is turned off. We performed process and device simulation using TCAD tools such as MEDICI and TSUPREM. The electrical characteristics of the proposed trench gate power MOSFET such as breakdown voltage and on resistance were compared with those of the conventional power MOSFET. Consequently, we obtained breakdown voltage of 100 V and low on resistance of $130m{\Omega}$. The proposed power MOSFET will be used as a switch in batteries of mobile phones and note books.

Dependence of Electrical Characteristics on Back Bias in SOI Device (SOI(Silicon-on-Insulator) 소자에서 후면 Bias에 대한 전기적 특성의 의존성)

  • 강재경;박재홍;김철주
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.43-44
    • /
    • 1993
  • In this study SOI MOSFET model of the structure with 4-terminals and 3-interfaces is proposed. An SOI MOSFET is modeled with the equivalent circuit considered the interface capacitances. Parameters of SOI MOSFET device are extracted, and the electrical characteristics due to back-bias change is simulated. In SOI-MOSFET model device we describe the characteristics of threshold voltage, subthreshold slope, maxium electrical field and drain currents in the front channel when the back channel condition move into accmulation, depletion, and inversion regions respectively.

  • PDF

Analysis of the electrical characteristics with back-gate bias in n-channel thin film SOI MOSFET (N-채널 박막 SOI MOSFET의 후면 바이어스에 따른 전기적 특성 분석)

  • 이제혁;임동규;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.461-463
    • /
    • 1999
  • In this paper, we have systematically investigated the variation of electrical characteristics with back-gate bias of n-channel SOI MOSFET\\`s. When positive bias is applied back-gate surface is inverted and back channel current is increased. When negative bias is applied back-gate surface is accumulated but it does not affect to the electrical characteristics.

  • PDF

Temperature-dependent characteristics of Current-Voltage for Double Gate MOSFET (동작 온도에 따른 Double Gate MOSFET의 전류-전압특성)

  • 김영동;고석웅;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.693-695
    • /
    • 2003
  • In this paper, we have investigated temperature-dependent characteristics of current-voltage for double gate MOSFET with main gate and side gate. DG MOSFET has the main gate length of 50nm and the side gate length of 70nm. We have investigated the temperature-dependent characteristics of current-voltage and drain voltage is changed from 0V to 5.0V at $V_{mg}$ =1.5V and $V_{sg}$ =3.0V. We have obtained a very good characteristics of current-voltage for 77K. We have simulated using ISE-TCAD tool for characteristics analysis of device.

  • PDF

The Electrical Characteristics of 1200V Trench Gate MOSFET Based on SiC (1200V급 SiC 기반 트렌치 게이트 MOSFET의 전기적 특성에 관한 연구)

  • Yu Rim Kim;Dong Hyeon Lee;Min Seo Kim;Jin Woo Choi;Ey Goo Kang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • This research was carried out experiments with changing processes and design parameters to optimally design a SiC-based 1200V power MOSFET, and then, essential electrical characteristics were derived. In order to secure the excellence of the trench gate type SiC power MOSFET device to be designed, electrical characteristics were derived by designing it under conditions such as planner gate SiC power MOSFET, and it was compared with the trench gate type SiC power MOSFET device. As a result of the comparative analysis, the on-resistance while maintaining the yield voltage was 1,840mΩ, for planner gate power MOSFET and to 40mΩ for trench gate power MOSFET, respectively, indicating characteristics more than 40 times better. It was judged that excellent results were derived because the temperature resistance directly affects energy efficiency. It is predicted that the devices optimized through this experiment can sufficiently replace the IGBT devices generally used in 1200V class, and that since the SiC devices are wide band gap devices, they will be widely used to apply semiconductors for vehicles using devices with excellent thermal characteristics.

Analysis of the electrical characteristics of HV-MOSFET under various temperature (고내압 MOSFET의 고온 영역에서의 전기적 특성 분석)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2007
  • In this study, the electrical characteristics of Symmetric and Asymmetric High Voltage MOSFET(HV-MOSFET) under high temperature were investigated. And, the specific on-resistance, threshold voltage, transconductance, drain current of the HV-MOSFETs were measured over a temperatures range of 300K ${\leq}$ T ${\leq}$400K. From the result of measured data, specific on-resistance increases slightly with increasing temperature. Especially, at high temperature(at 400K) specific on-resistance was increased about 30% than that in room temperature. And, in high temperature condition (at 400K), drain current was decreased about 30%, Also, transconductance(gm) was decreases with increasing temperature.

  • PDF