• Title/Summary/Keyword: MOLY assay

Search Result 11, Processing Time 0.026 seconds

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

In vitro and In vivo Evaluation of Genotoxicity of Stevioside and Steviol, Natural Sweetner (천연감미료 스테비오사이드와 스테비올의 생체내, 시험관내 유전독성평가)

  • 오혜영;한의식;최돈웅;김종원;손수정;엄미옥;강일현;강혁준;하광원
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.614-622
    • /
    • 1999
  • The standard operation procedure of mouse lymphoma L5178Y $tk^{+/-}-3.7.2C$ gene mutation assay (MOLY) has been regarded as a sensitive in vitro mammalian cell gene mutation assay that is capable of detecting clastogens as well as mutagens. Using MOLY, one of natural sweetner, stevioside (5mg/ml) and its aglycon, steviol ($340{\;}\mu\textrm{g}/ml$) were evaluated the mutagenicity. Stevioside and steviol did not induce mutagenicity in MOLY. On the other hand, stevioside (250mg/kg, B.W.) and steviol (200mg/kg, B.W.) were also evaluated their ability to induce micronuclei in regenerating hepatocytes and bone marrow cells of ddY mice. From these results, stevioside and steviol did not induce any mutagenic effect both MOLY and in vivo micronucleus test.

  • PDF

Genotoxicity on Structural Derivatives of Sophoricoside, a Component of Sophora Japonica, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Jung, Sang-Hun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.179-188
    • /
    • 2005
  • To develop the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, VI-3, VII-3, VIII-3, VII-20 and VII-20 (sodium salt) were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Single cell gel electrophoresis (Comet) assay, mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. Through the primary screening using the comet assay, we could choose the first candidates of sophoricoside derivatives with no genotoxic potentials as JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt). Also JSH-VII-3, VII-20 and VII-20 (sodium salt) are non-mutagenic in MOLY assay, while JSH-II-3 is mutagenic at high concentration with the presence of metabolic activation system in both comet assay and MOLY assay. The selected derivatives (JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt) are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. From results of chromosomal aberration assay, 6 h treatment of JSH-VI-3, VII-3 and VII-20 (sodium salt) were not revealed clastogenicity both in the presence and absence of S-9 mixture. Therefore, we suggests that JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt), as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen. To process the development into new anti-inflammatory drug of these derivatives, further investigation will need.

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.

Genotoxicity Study of Sophoricoside in Bacterial and Mammalian Cell System

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Kim, Youngsoo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.183-184
    • /
    • 2003
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to have an anti-inflammatory effect on rat paw edema model. To develop as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial test, chromosomal aberration assay, Comet assay and MOLY assay. In Ames test, sophoricoside of 5000 ∼ 313 $\mu\textrm{g}$/plate concentrations was not shown significant mutagenic effect in Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains. The cytotoxicity (IC$\_$50/ and IC$\_$20/) of sophoricoside was determined above the concentration of 5000 $\mu\textrm{g}$/ml in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line. At concentrations of 5000, 2500 and 1250 $\mu\textrm{g}$/ml, this compound was not induced chromosomal aberration in CHL fibroblast cell in the absence and presence of S-9 metabolic activation system. Also in comet assay, DNA damage was not observed in L5178Y cell line. Also in MOLY assay, sophoricoside of 5000 ∼ 313 $\mu\textrm{g}$/ml concentrations was not shown significant mutagenic effect in absence of S-9 metabolic activation system. However, the higher concentration of 5000 and 2500 $\mu\textrm{g}$/ml of sophoricoside induced the increased mutation frequency (MF) in the presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside observed in bacterial systems whereas, genotoxic effects observed in mammalian cell systems in the presence of metabolic activation system. These results suggested that the metabolite(s) of sophoricoside can cause some genotoxic effects in mammalian cells.

  • PDF

Genotoxicity Study of sophoricoside derivatives in mammalian cells system

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Jung, Sang-Hun;Kim, Youngsoo;Kim, Mi-Kyung;Lee, Seung-Ho;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.185-185
    • /
    • 2003
  • To develope the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, JSH-Ⅵ-3, JSH-Ⅶ-3, and JSH-Ⅷ-3 were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase (tk$\^$+/-/) gene assay (MOLY) and single cell gel electrophoresis (Comet) assay in mammalian cells were used as HTTS tool in our laboratory. In MOLY assay, JSH-Ⅶ-3 at 50 ∼ 6 $\mu\textrm{g}$/ml concentrations was not shown significant mutagenic effect in the absence and presence of S-9 metabolic activation system. However, the concentration of ISH-II-3, 38 $\mu\textrm{g}$/ml, induced increased mutation frequency (MF) in the presence of S-9 metabolic activation system. Also in comet assay, DNA damage was not observed in JSH-Ⅵ-3 and JSH-Ⅶ-3, wherase concentration of 32.8 $\mu\textrm{g}$/ml in JSH-II-3 and 13.9 $\mu\textrm{g}$/ml in JSH-Ⅶ-3 were induced DNA damage in the absence of S-9 metabolic activation system. Therefore, we suggest that JSH-Ⅵ-3 and JSH-Ⅶ-3 have no genotoxic effects but JSH-II-3 and JSH-Ⅷ-3 induce some mutagenicity and DNA strand breaks in mouse lymphoma cell line used this study.

  • PDF

Genotoxicity Study of sophoricoside derivatives in mammalian cells system

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.178.2-178.2
    • /
    • 2003
  • To develope the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, JSH-Ⅵ-3, JSH-Ⅶ-3, and JSH-Ⅷ-3 were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of Quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay(MOLY) and single cell gel electrophoresis (Comet) assay in mammalian cells were used as HTTS tool in our laboratory. (omitted)

  • PDF