Genotoxicity on Structural Derivatives of Sophoricoside, a Component of Sophora Japonica, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Kim, Youn-Jung (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Kim, Mi-Soon (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Kim, Min-Ji (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Sarma, Sailendra Nath (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Jung, Sang-Hun (College of Pharmacy, Chungnam Natl. Univ.)
  • Published : 2005.09.30

Abstract

To develop the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, VI-3, VII-3, VIII-3, VII-20 and VII-20 (sodium salt) were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Single cell gel electrophoresis (Comet) assay, mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. Through the primary screening using the comet assay, we could choose the first candidates of sophoricoside derivatives with no genotoxic potentials as JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt). Also JSH-VII-3, VII-20 and VII-20 (sodium salt) are non-mutagenic in MOLY assay, while JSH-II-3 is mutagenic at high concentration with the presence of metabolic activation system in both comet assay and MOLY assay. The selected derivatives (JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt) are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. From results of chromosomal aberration assay, 6 h treatment of JSH-VI-3, VII-3 and VII-20 (sodium salt) were not revealed clastogenicity both in the presence and absence of S-9 mixture. Therefore, we suggests that JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt), as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen. To process the development into new anti-inflammatory drug of these derivatives, further investigation will need.

Keywords

References

  1. Shen, Z.X. Recent research and developments in traditional Chinese medicine in China. Report of the Third Meeting of Directors of WHO Collaborating Centres for Traditional Medicine. World Health Organization. Geneva (1996)
  2. Bennerman, R., Burton J. & Chen, W.C. Traditional Medicine and Health Care Coverage. World Health Organization. Geneva (1983)
  3. Ames, N.A. Dietary carcinogens and anticarcinogens. Science 221, 616-619 (1983)
  4. McCann, J., Choi, E., Yamasaki, E. & Ames, B.N. Detection of carcinogens as mutagens in the Salmonella/ microsome test : assay of 300 chemicals. Proc. Natl. Acad. Sci. USA. 72, 5135-5139 (1975). https://doi.org/10.1073/pnas.72.12.5135
  5. Meselson, M. & Russell, K. Comparison of carcinogenic and mutagenic potency, in Origin of Human Cancer Cold Spring Harbor Laboratory (H.H. Hiatt, J.D. Watson and J.A. Winstend eds.) 1473-1481 (1977)
  6. Farnsworth, N.R. et al. Medicinal plants in therapy, Bull World Health Organ. 63(6), 965-981 (1985)
  7. Djukanovic, R. Asthma: A disease of inflammation and repair. J. Allergy Clin. Immunol. 105, 522-526 (2000) https://doi.org/10.1067/mai.2000.104251
  8. Kraneveld, A.D., Folkerts, G., van Oosterhout, A.J. & Nijkamp, F.P. Airway hyperresponsiveness: First eosinophils and then neuropeptides. Int. J. Immunopharmacol. 19, 517-527 (1997) https://doi.org/10.1016/S0192-0561(97)00085-4
  9. Hamelmann, E. & Gelfand, Role, E.W. of IL-5 in the development of allergen-induced airway hyperresponsiveness. Int. Arch. Allergy Immunol. 120, 8-16 (1999) https://doi.org/10.1159/000024215
  10. Allakhverdi, Z., Allam, M. & Renzi, P.M. Inhibition of antigen-induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common B chain of IL-3, IL-5, GM-CSF receptors in a rat model of allergic asthma. Am. J. Respir. Crit. Care Med. 165, 1015-1021 (2002) https://doi.org/10.1164/ajrccm.165.7.2109095
  11. Min, B. et al. Sophoricoside analogs as the IL-5 inhibitors from Sophora japonica. Planta Med. 65, 408-412 (1999) https://doi.org/10.1055/s-1999-14016
  12. Yun, J. et al. Differential inhibitory effects of sophoricoside analogs on bioactivity of several cytokines. Life Sci. 67, 2855-2863 (2000) https://doi.org/10.1016/S0024-3205(00)00873-0
  13. Gabor, M. & Razga, Z. Effect of benzopyrene derivatives on simultaneously induced croton oil ear oedema and carrageenin paw oedema in rats. Acta. Physiol. Hung. 77(3-4), 197-207 (1991)
  14. Fraga, C.G., Martino, V.S., Ferraro, G.E., Coussio, J.D. & Boveris, A. Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem. Pharmacol. 36(5), 717-720 (1987) https://doi.org/10.1016/0006-2952(87)90724-6
  15. Kim, Y.J. et al. Genotoxicity study of sophoricoside, a constituent of sophora japonica, in bacterial and mammalian system. Environ. Mutagens & Carcinogens. 21(2), 99-105 (2001)
  16. Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  17. Singh, N.P., Stephens, R.E. & Schneider, E.L. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int. J. Radiat. Biol. 66, 23-28 (1994) https://doi.org/10.1080/09553009414550911
  18. Ryu, J.C., Kim, H.J., Seo, Y.R. & Kim, K.R. Single Cell Gel Electrophoresis (Comet Assay) to detect DNA damage and Apoptosis in cell level. Environ. Mutagen & Carcinogen. 17(2), 71-77 (1997) https://doi.org/10.1002/(SICI)1520-6866(1997)17:2<71::AID-TCM3>3.0.CO;2-B
  19. Ames, B.N., Durston, W.E., Yamasaki, E. & Lee, F.D. Carcinogens are mutagens :a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci USA. 70, 2281-2285 (1973) https://doi.org/10.1073/pnas.70.8.2281
  20. Ames, B.N., McCann, J. & Yamasaki, E. Method for detecting carcinogens and mutagens with Salmonella/ mammalian-microsome mutagenicity test. Mutation Res. 31, 347-364 (1975) https://doi.org/10.1016/0165-1161(75)90046-1
  21. Maron, D.M. & Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutation Res. 113, 173-215 (1983) https://doi.org/10.1016/0165-1161(83)90010-9
  22. Ishidate, M. & Odashima, S. Chromosome test with 134 compounds on chinese hamster cells in vitro-A screening for chemical carcinogens. Mutation Res. 48, 337-354 (1977) https://doi.org/10.1016/0027-5107(77)90177-4
  23. Tice, R.R. et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206-221 (2000) https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  24. Honma, M. et al. Evaluation of the mouse lymphoma tk assay (microwell method) as an alternative to the in vitro chromosomal aberration test. Mutagenesis 14, 5-22 (1999) https://doi.org/10.1093/mutage/14.1.5
  25. Bonneau, D., Thybaud, V., Melcion, C., Bouhet. F. & Cordier, A. Optimum associations of tester strains for maximum detection of mutagenic compounds in the Ames test. Mutation Res. 252, 269-279 (1991) https://doi.org/10.1016/0165-1161(91)90006-T
  26. Clements, J. Gene mutation assays in mammalian cells, In S. O'Hare & C.K. Atterwill (Ed.), Methods in Molecular Biology, in vitro Toxicity Testing Protocols. Humana Press Inc. Totowa, NJ. 43, 277-286 (1990)
  27. Robinson, W.D., Green, M.H.L. Cole, J. Garner, R.C. Healy, M.J. & Gatehouse, D. Statistical evaluation of bacterial/mammalian fluctuation tests, in Statistical Evaluation of Mutagenicity Test Data (Kirkland, D. J., ed.). Cambridge University Press. Cambridge. UK. 102-140 (1990)
  28. OECD. OECD guideline for the testing of chemicals, Documents 473, Genetic toxicology: in vitro mammalian cytogenetic test. Organization for Economic Cooperation and Development. Paris, France (1993)
  29. Ryu, J.C. et al. A study on the clastogenicity of trichothecene mycotoxins in chinese hamster lung cells. Korean J. Toxicol. 9(1), 13-21 (1993)
  30. Ryu, J.-C., Lee, S., Kim, K.-R. & Park, J. Evaluation of the genetic toxicity of synthetic chemicals (I). Chromosomal aberration test on chinese hamster lung cells in vitro. Environ. Mutagens & Carcinogens. 14 (2), 138-144 (1994)
  31. Ryu, J.-C. et al. Evaluation of the genetic toxicity of synthetic chemicals (II). a pyrethroid insecticide, fenpropathrin. Arch. Pharm. Res. 19(4), 251-257 (1996) https://doi.org/10.1007/BF02976235
  32. Ryu, J.-C. et al. Chromosomal aberration assay of taxol and 10-deacetyl baccatin III in chinese hamster lung cells in vitro. Environ. Mutagens & Carcinogens. 16(1), 6-12 (1996)
  33. Ryu, J.-C., Youn, J.-Y., Cho, K.-H. & Chang, I.-M. Mutation spectrum in lacI gene of transgenic Big Blue cell line following to short term exposure 4- nitroquinoline-N-oxide. Environ. Mol. Mutagen. 31 (29), 16 (1998)
  34. Ryu, J.-C. et al. Genotoxicity Study of Bojungchisuptang, an oriental herbal decoction-in vitro chromosome aberration assay in chinese hamster lung cells and in vitro supravital-staining micronucleus assay with mouse peripheral reticulocytes. Arch. Pharm. Res. 21(4), 391-397 (1998) https://doi.org/10.1007/BF02974632
  35. Ryu, J.-C., Kim, K.-R., Lee, S. & Park, J. Evaluation of the genetic toxicity of synthetic chemicals (III), Chromosomal aberration assay with 28 chemicals in chinese hamster lung cells in vitro. Environ. Mutagens &Carcinogens. 21(1), 14-22 (2001)
  36. JEMS-MMS. Atlas of chromosome aberration by chemicals. Japanese Environmental Mutagen Society- Mammalian Mutagenicity Study Group, Tokyo, Japan (1988)
  37. Altman, D.G. Practical statistics for medical research, in Chapter 10. Comparing groups-categorical data, London, Chapman & Hall. 229-276, (1993)