• Title/Summary/Keyword: MOLDFLOW

Search Result 99, Processing Time 0.02 seconds

A Study on manufacturing of Injection Mold and Delivery System Characteristics of Cosmic case (화장품 용기의 유동 특성 및 사출금형 제작에 관한 연구)

  • Choi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6047-6052
    • /
    • 2013
  • A cosmetic manufacturing process requires a mold that is inevitable for mass production. Cosmetic containers are one of major factors affecting the customer's purchase decision. In addition, the manufacturing cost in cosmetic container comprises a large portion of the entire product cost. Therefore, a mold satisfying the economical feasibility, aesthetics and functionality is necessary. Among the cosmetic containers, square shape containers have a tendency of having a short shot defect product. The square shaped cosmetic containers are mostly produced as a side gate shape on the two-plate molds. On the other hand, there are two disadvantages, such as gate trace and post processing requirement. The overlap-gateproposed in this study has the characteristics of intaglio gate cutting and no need for post processing. The delivery system of the overlap gate was simulated and compared with the side gate via Moldflow. The improvement in flow, frozen rate, density, and Air trap was confirmed. Based on the simulation results, the mold and performed injection molding was fabricated. In this study, the possibility of the mass production of high aesthetic and functionality cosmetic containers was verified.

Optimum Design of Rubber Injection Molding Process for the Preparation of Anti-vibration Rubber (방진고무사출성형의 적정설계)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.490-498
    • /
    • 2010
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW(Ver. 5.2) in order to solve the process-problems of K company relating to air-traps and short-shots. The former occurs at the cavity edge of torque-rod-bush and the latter takes place for the injection molding of dynamic dampers. As a result the process problem relating to air traps was solved by optimizing edge-angle and the number of gates to prevent the flow congestion of flow-front and to make the flow-front movement unaffected by congestion. For dynamic dampers of K company the unmolded flaw caused by their unfilled cavity was corrected by installing the air-vent at the confronting locations of both upstream and downstream of flow-front where air traps frequently occur. Besides the unmolded flaws were rectified by altering the position of gate from the upper to the middle or by increasing the number of gates. Thus the process problems of K company relating to air-traps and short-shots of torque-rod-bush and dynamic dampers, respectively, were solved by proper altering of mold design with process simulation of rubber injection molding.

Injection Molding Analysis of Map Pocket with a Speaker Grill Using Shell Element (박막 요소를 이용한 스피커 그릴 일체형 맵 포켓의 사출 성형 해석)

  • Kim, Hong-Seok;Jo, Myeong-Sang;Son, Jung-Sik;Seo, Tae-Su;Kim, Tae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1294-1301
    • /
    • 2001
  • In order to reduce the time and cost for assembly, automobile speaker grills have been injection molded with door trims or map pockets in one piece recently. However, several defects such as short shots or air traps can easily occur due to the decreased fluidity of the melting polymer according to the excessive heat transfer to the mold. Therefore, it is necessary to optimize the resin feed system and predict possible defects by CAE analysis. However it is not possible to obtain exact analysis results for the speaker grill by using general shell elements since the heat transfer in the thickness direction which is the dominant factor of the filling stage can not be considered. Therefore, there have been several efforts to simulate the injection molding nature of the speaker grill by using shell elements with an effective thickness which is smaller than the actual thickness of the part. Two empirical values have been recommended for the effective thickness in real practice. One is 50∼70% of the thickness of the speaker grill and another is the gap distance between the adjacent holes. In this paper, CAE analyses of a map pocket with a speaker grill were conducted using shell elements with both of these recommended effective thicknesses, and the predicted flow fronts were compared with the findings from injection molding experiments. The commercial code MOLDFLOW was used for injection molding analysis and an 850 ton injection molding machine was used for experiments.

Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method (다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jeoung, Sun-Kyoung;Lee, Pyoung-Chan;Moon, Ju-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.264-269
    • /
    • 2012
  • Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the $L_{16}$ orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.

Simulation for Injection Molding of Insulation Spacers for Gas-Insulated Switches Using Thermosetting Epoxy Resin (열경화성 에폭시를 이용한 가스 절연 개폐기용 절연 스페이서의 사출 성형 최적화 시뮬레이션)

  • Bae, Jaesung;Lee, Wonchang;Jee, Hongsub;Hong, Byungyou;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.426-432
    • /
    • 2021
  • Injection molding is used in many industrial fields such as home appliances, vehicle parts, and electronic device parts because various resins can be molded, leading to mass production of complex shapes. Generally, the empirical prediction method is used to set the initial processing conditions of injection molding. However, this approach requires a lot of cost and its presented solution is not accurate. In this paper, injection molding was simulated through the MoldflowTM in order to manufacture the spacer for gas insulated switch. Through the simulation, the flow of the resin with respect to the diameter of the inlet was analyzed. It was found that the process was possible at a higher resin temperature as the diameter of the inlet increased. In addition, through thermal analysis during injection of the resin, it was confirmed that a stagnation phenomenon occurred at the insert portion during injection molding, and the temperature of the resin was higher than that of the mold. As in this paper, if the spacer is manufactured by optimizing the injection hole and the temperature of the injection process based on simulation, it is expected that the spacer can be manufactured with high productivity.

A Study of Shrinkage Phenomena on Injection modeled Pa Metal Insert (금속 인서트 사출 성형품의 수축 현상에 관한 연구)

  • 김영수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.112-118
    • /
    • 1999
  • Shrinkage behavior was investigated to obtain more accurate dimensions of injected molding parts for free and restricted shrinkage conditions. various parameters for metal inserted injection process, such as thickness of resin, holding pressure and time, mo이 temperature and restriction condition of mold, were considered for the analysis of shrinkage phenomena. For numerical analysis, MOLDFLOW software was used to find the deterministic parameters of filling time, temperature, pressure and holding time. Also , experimental shrinkage effects were measured through actual injection molding process and the resin thickness was under controlled as 3 mm , 5 mm, and 7mm for the shapes of plastic gear made of Polymide(PA) and Polyxymethlene(POM). The main parameters of these injection processes were found to be holding pressure, holding time and mold temperature in the case of metal inserted molding.

  • PDF

Direct Search-Based Robust Design of Warpage in Injection Molded Parts (직접탐색법을 이용한 사출성형품의 강건설계)

  • 김경모;박종천;안흥일
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.86-96
    • /
    • 2001
  • The objective of this research is to develop a robust design methodology for plastic injection molded parts wherein warpage will be minimized by a complex method which is a kind of a simple direct search method. The design space considered for optimization is divided Into two sub-design space : mold and process conditions. Warpage is quantified using the Moldflow injection molding simulation software. The design methodology was applied to an actual part of a fax machine, the Guide-ASF model, through two different design policies. The significance of this study is the synthesis of a computer simulation of injection molding process and optimization technique to determine the optimal robust design solution.

  • PDF

Development of Asymmetric Plastic Fan Product (비대칭형 플라스틱 팬 제품 개발)

  • Yon, Kyu-Hyun;Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • The analysis of injection molding process by CAE is widely used in development of plastic products. That comes from the fact that CAE analysis can reduce trial and error based on optimized design. On this study, by use of MOLDFLOW, the causes of product defects were found and solved by trade-off study. CAE analysis includes Flow-Cool-Warpage Analyses and finally a new mold-die design with better product quality was suggested. On injection molding of round-shaped plastic fan, new mold-die system with 4-tunnel gates located on the edge of a fan disc shows better quality rather than pin-point gate located on the center of a disc. That was effective in terms of flow mark removal and flatness improvement of the product.

  • PDF

Runner System design for Fillingbalance in Multi-cavity Injection molding (다수 캐비티 사출성형에서 균형충전을 위한 러너시스템 설계)

  • Noh, Seung-Kyu;Jeon, Kang-Il;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.301-304
    • /
    • 2010
  • 본 논문에서는 다수 캐비티 금형의 러너 내 불균일한 전단분포로 인해 발생되는 충전불균형에 따른 치수정밀도, 기계적 강도 등 물성의 차이가 발생되는 문제점을 해소하기 위해서 수지가 처음 분기되는 2차 러너의 구조에 변화를 주어 다수 캐비티 사출성형에서 충전균형을 위한 러너시스템을 제시하였다. 이 러너시스템은 전단률차이에 의한 즉, 온도가 불균일한 수지의 흐름을 혼합함으로써 수지의 흐름을 균일하게 하여 충전균형을 이루도록 하였다. PP수지를 대상으로 각 캐비티 간 균형충전에 대해 이 러너시스템이 효과가 있는지 검증하기 위해 CAE프로그램(Moldflow)을 이용한 유동해석을 통해 그 효과를 나타내 보았다.

  • PDF

A Study on the Optimal Design for CLIP Rubber Product Made of EPDM Using Flow Analysis (EPDM재질 CLIP고무제품의 유동해석을 이용한 최적 설계에 관한 연구)

  • Huh, Young-Min;Lee, Kwang-O;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.159-165
    • /
    • 2006
  • Many rubber products are used in industrial products such as various hoses, rubber belts and oil seals etc. Especially, more then 200 rubber parts are used in the automobile, but design technology of these is largely dependent on Held experiences. These methods brought about too much time and cost in the developing procedures. However, with the help of recent rapid development of non-liner computer analysis, we can develop new sound products at low cost. Therefore in this study, optimizations of design variables such as location and number of gate in order to develop CLIP rubber product made of EPDM were performed by CAE in which Cross-WLF equations are adopted. The validity of proposed variables is evaluated by comparison with real forming results.