• Title/Summary/Keyword: MODIS image

Search Result 100, Processing Time 0.025 seconds

AEROSOL OPTICAL THICKNESS ESTIMATED FROM LANDSAT/ETM+IMAGE DATA

  • Kawata, Yoshiyuki;Fukul, Haruki;Takemata, Kazuya
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.378-381
    • /
    • 2002
  • We retrieved the aerosol optical thickness $\tau$$_{a}$ over land from Landsat-7/ETM+ image data using the correlation between the visible reflectance and middle IR reflectance. This band correlation method for aerosol retrieval was originally proposed fur MODIS data analysis by Kaufman et al.(1977). The results of retrieved aerosol optical thickness $\tau$$_{a}$ from Landsat-7/ETM+ data were compared with the simultaneous sky observation data at our study site. We found a good agreement between the retrieved and observed values. We presented the distribution maps of the aerosol optical thickness over land, retrieved from Landsat-7/ETM+ image data. Then, the surface reflectance map was also presented. The aerosol optical thickness over sea was retrieved assuming no reflected contribution from sea in the near IR band. In addition, we discussed some limitations when we apply the band correlation method.

  • PDF

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Terrace Fields Classification in North Korea Using MODIS Multi-temporal Image Data (MODIS 다중시기 영상을 이용한 북한 다락밭 분류)

  • Jeong, Seung Gyu;Park, Jonghoon;Park, Chong Hwa;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

Drought Monitoring Accuracy Evaluation through ROC Analysis for Satellite Image based Drought Indices (ROC 분석에 의한 위성기반 가뭄지수의 모니터링 정확도 평가)

  • Park, Seo Yeon;Seo, Chan Yang;Hong, Hyun Pyo;Lee, Joo Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • 최근 지구온난화에 따른 기후변화로 인하여 전 세계적으로 가뭄, 홍수 등의 극한 기후사상이 발생하고 있다. 그 중 가뭄의 발생은 다른 수문학적 재해와는 다르게 장기간에 걸쳐서 발생하고 그 피해 범위가 광범위하게 나타난다. 또한, 기후변화를 고려한 다양한 기후예측모델의 예측 결과는 가뭄 재해가 앞으로 더 심각해질 수 있다는 전망을 하고 있다는 점에서 그 심각성이 더욱 대두되고 있다. 이러한 가뭄을 효과적으로 감시하고 평가할 수 있는 방안이 필요로 하게 되며, 기존의 가뭄지수(drought index)의 단점을 보완할 수 있는 수단으로 높은 활용성을 갖고 있는 위성영상자료를 활용한 효과적인 가뭄모니터링 기술의 개발이 요구되고 있다. 본 연구에서는 가뭄을 시 공간적으로 모니터링하기 위해서 위성자료를 활용하였으며, Terra/Aqua 위성의 MODIS 영상자료 와 TRMM 및 GPM 위성의 강우자료를 활용하여 가뭄을 감시할 수 있는 가뭄지수 인 VHI(Vegetation Health Index), DSI(Drought Severity Index), Water Balance Method를 산정하였다. 산정된 지수의 정확도를 정량적으로 평가하기 위하여 가뭄 피해조사 결과에 의한 2001년 및 2014-2015년 농업적/수문학적 가뭄피해지역과 위성기반 가뭄지수에 의한 가뭄모니터링 결과 간의 ROC 분석을 통해 위성자료 기반 가뭄감시의 적용 가능성을 평가하였다. 본 연구의 결과를 통하여 위성영상 자료를 통하여 산정되는 가뭄지수의 기상학적/농업적/수문학적 가뭄감시 기능 및 적용성이 정량적으로 평가될 수 있을 것으로 판단된다.

  • PDF

Development of automatic search algorithm for optimal site determination of hydroelectric dam using satellite image (위성영상을 활용한 수력발전용 댐 적지산정 알고리즘 개발)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.71-71
    • /
    • 2020
  • 최근 기후변화의 영향으로 극심한 가뭄과 홍수가 발생하고 기온 또한 꾸준히 상승하고 있으며, 이러한 변화에 대응하기 위해 전 세계에서 이산화탄소를 줄이고 국제 에너지 시장을 재구성하려는 시도가 꾸준히 이루어지고 있다. World Energy Outlook(2012)에 따르면 특히 에너지 시장에서 개발도상국의 수력분야 개발투자가 2035년까지 15,490억 달러에 이를 것으로 전망됨에 따라 국내에서 해외 수력발전사업에 적극적으로 나서고 있다. 그러나 국내와는 달리 댐 건설의 사전조사에 필요한 자료가 없거나 구축하는데 문제가 있어 손쉽게 구할 수 있는 자료로 사전에 수력발전 댐 적지를 조사할 수 있는 기술의 개발이 필요하다. 따라서 본 연구에서는 수력발전용 댐 위치 결정을 위한 예비 적지 분석 알고리즘을 개발하고, 분석 알고리즘에 위성영상자료인 30m 해상도의 ASTGTM(ASTER Global Digital Elevation Model)와 500m 해상도의 MCD12Q1(MODIS/Terra Aqua Land Cover) 토지피복자료를 사용하고자 한다. 예비 적지 분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 자동적지탐색과 댐 건설시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지산정은 DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복도를 통한 보상면적을 기반으로 순위를 매겨 사용자에게 최적의 위치들을 표출한다. 본 연구의 결과는 향후 해외 수력 댐 적지 예비분석 및 해외 수력산업 진출을 지원할 수 있을 것으로 기대된다.

  • PDF

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.