References
- Bhatia, R. and A. L. Thome-Lyman. 2002. Food shortages and nutrition in North Korea. The Lancet (Suppl.) 360: 27-28. https://doi.org/10.1016/S0140-6736(02)11809-5
- Bu KS. 2010. Agriculture of North Korea, Seoul National University Press.
- Cha SY.Seo DJ and Park CH. 2009. Monitoring vegetation phenology using MODIS in northern plateau region, North Korea. Korean Journal of Remote Sensing 25(5): 399-409. https://doi.org/10.7780/kjrs.2009.25.5.399
- Choi CH. 2009. Korean Unification and the Land Policy of North Korea. Korea Public Land Law Association 43(3): 151-175.
- Environment Geographic Information System: http://egis.me.go.kr/main.do
- FAO. 1974. A Framework on Land Evaluation, FAO Soil Resour. Bull., FAO, Rome.
- Google Map: http://map.google.com
- Gullison, R. E..P. C. Frumhoff.J. G. Canadell. C. B. Field.D. C. Nepstad.K. Hayhoe.R. Avissar.L. M. Curran.P. Friedlingstein. C. D. Jones and C. Nobre. 2007. Tropical forests and climate policy. Science -New York then Washington- 316(5827): 985-986. https://doi.org/10.1126/science.1136163
- Hong SY.Min BK.Lee JM.Kim Y and Lee K. 2012. Estimation of paddy field area in North Korea using RapidEye images. Korean Journal of Soil Science and Fertilizer 45(6): 1194-1202. https://doi.org/10.7745/KJSSF.2012.45.6.1194
- Hudson, W. D. and C. W. Ramm. 1987. Correct formulation of the Kappa Coefficient of Agreement. Photogrammetric Engineering & Remote Sensing 53(4): 421-422.
- Jeong SG. 2006. Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data, orean Journal of Remote Sensing 22(6): 553-563. https://doi.org/10.7780/kjrs.2006.22.6.553
- Kim KH.Lee SH and Choi JY. 2014. An analysis of agricultural infrastructure status of North Korea using satellite imagery. KCID J 21(1): 45-54.
- Kim NS.Lee HC and Cha JY. 2013. A Study on Changes of Phenology and Characteristics of Spatial Distribution Using MODIS Images. Journal of the Korea Society of Environmental Restoration Technology 16(5): 59-69. https://doi.org/10.13087/kosert.2013.16.5.059
- Kiptala, J. K..Y. Mohamed.M. L. Mul.M. J. M. Cheema and P. Van der Zaag. 2013. Land use and land cover classification using phenological variability from MODIS vegetation in the Upper Pangani River Basin, Eastern Africa. Physics and Chemistry of the Earth, Parts A/B/C, 66: 112-122. https://doi.org/10.1016/j.pce.2013.08.002
- Kouch, K. and F. Yamazaki. 2007. Characteristics of Tsunami-Affected Areas in Moderate-Resolution Satellite Images. IEEE Transactions on Geoscience and Remote Sensing 45(6): 1650-1657. https://doi.org/10.1109/TGRS.2006.886968
- Landis, J. R. and G. G. Koch. 1977. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33: 363-374. https://doi.org/10.2307/2529786
- Lee SH. 2004. Situation of Degraded Forest Land in DPRK and Strategies for Forestry Cooperation between South and North Korea, Journal of Agriculture & Life Sciences 38(3): 101-113.
- Pacheco, C. E..M. I. Aguado and D. Mollicone. 2014. Identification and characterization of deforestation hot spots in Venezuela using MODIS satellite images. Acta Amazonica 44(2): 185-196. https://doi.org/10.1590/S0044-59672014000200004
- Pan, X. Z..S. Uchida.Y. Liang.A. Hirano and B. Sun. 2010. Discriminating different landuse types by using multitemporal NDXI in a rice planting area. International Journal of Remote Sensing 31(3): 585-596. https://doi.org/10.1080/01431160902894442
- Prince, S. D..I. Becker-Reshef and K. Rishmawi. 2009. Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sensing of Environment 113(5): 1046-1057. https://doi.org/10.1016/j.rse.2009.01.016
- Sasaki, N. and F. E. Putz. 2009. Critical need for new definitions of "forest" and "forest degradation" in global climate change agreements. Conservation Letters 2(5): 226-232. https://doi.org/10.1111/j.1755-263X.2009.00067.x
- Solano, R..K. Didan.A. Jacobson and A. Huete. 2010. MODIS Vegetation Index User's Guide (MOD13 Series).
- Takeuchi, W. and Y. Yasuoka. 2004. Development of normalized vegetation, soil and water indices derived from satellite remote sensing data. Journal of the Japan Society of Photogrammetry and Remote Sensing 43(6): 7-19. https://doi.org/10.4287/jsprs.43.6_7
- Tingting, L. and L. Chuang. 2010. Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand. Advances in Space Research 45(6): 775-784. https://doi.org/10.1016/j.asr.2009.11.013
- Wolf, A. 2010. Using WorldView 2 Vis-NIR MSI Imagery to Support Land Mapping and Feature Extraction Using Normalized Difference Index Ratios.
- Yeom JM.Han KS.Lee CS.Park YY and Kim YS. 2008. A detection of vegetation variation over North Korea using SPOT/VEGETATION NDVI. Journal of the Korean association of geographic information studies 11(2): 28-37.
- Yu JS. 2014. Ecological Restoration Modeling of Forest Landscape in North Korea, Doctoral Thesis, Seoul National University.
- Zhang, X..R. Sun.B. Zhang and Q. Tong. 2008. Land cover classification of the North China Plain using MODIS_EVI time series. ISPRS Journal of Photogrammetry and Remote Sensing 63(4): 476-484. https://doi.org/10.1016/j.isprsjprs.2008.02.005
- Zheng, D. L..D. O. Wallin and Z. Q. Hao. 1997. Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea. Landscape Ecol. 12: 241-254. https://doi.org/10.1023/A:1007963324520
Cited by
- Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest vol.8, pp.12, 2016, https://doi.org/10.3390/rs8120997
- U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 - vol.37, pp.3, 2016, https://doi.org/10.7780/kjrs.2021.37.3.4
- Phenological Classification Using Deep Learning and the Sentinel-2 Satellite to Identify Priority Afforestation Sites in North Korea vol.13, pp.15, 2021, https://doi.org/10.3390/rs13152946
- Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea vol.13, pp.17, 2016, https://doi.org/10.3390/rs13173501