References
- Brown, M.E., D.J. Lary, A. Vrieling, D. Stathakis, and H. Mussa, 2008. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. International Journal of Remote Sensing, 29(24): 7141-7158. https://doi.org/10.1080/01431160802238435
- Cammalleri, C., M.C. Anderson, F. Gao, C.R. Hain, and W.P. Kustas, 2014. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agricultural and Forest Meteorology, 186: 1-11. https://doi.org/10.1016/j.agrformet.2013.11.001
- Chai, T., and R.R. Draxler, 2014. Root mean square error (RMSE) or mean absolute error (MAE)? ? Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7(3): 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
- Fan, H., X. Fu, Z. Zhang, and Q. Wu, 2015. Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sensing, 7(5): 6041-6058. https://doi.org/10.3390/rs70506041
- Feng, G., J. Masek, M. Schwaller, and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218. https://doi.org/10.1109/TGRS.2006.872081
- FLAASH, M., 2009. Atmospheric Correction Module: QUAC and FLAASH User's Guide, Version 4.7, Boulder, CO, USA.
- Gamon, J.A., K.F. Huemmrich, C.Y. Wong, I. Ensminger, S. Garrity, D.Y. Hollinger, A. Noormets, and J. Penuelas, 2016. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc Natl Acad Sci U S A, 113(46): 13087-13092. https://doi.org/10.1073/pnas.1606162113
- Gao, F., M.C. Anderson, X. Zhang, Z. Yang, J.G. Alfieri, W.P. Kustas, R. Mueller, D.M. Johnson, and J.H. Prueger, 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188: 9-25. https://doi.org/10.1016/j.rse.2016.11.004
- Goward, S.N., G.D. Cruickshanks, and A.S. Hope, 1985. Observed Relation between Thermal Emission and Reflected Spectral Radiance of a Complex Vegetated Landscape. Remote Sensing of Environment, 18: 137-146. https://doi.org/10.1016/0034-4257(85)90044-6
- Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(12): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
- Jarihani, A., T. McVicar, T. Van Niel, I. Emelyanova, J. Callow, and K. Johansen, 2014. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Indexthen-Blend" and "Blend-then-Index" Approaches. Remote Sensing, 6(10): 9213-9238. https://doi.org/10.3390/rs6109213
- Jin, Y., S. Sung, D. Lee, G. Biging, and S. Jeong, 2016. Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest. Remote Sensing, 8(12): 997. https://doi.org/10.3390/rs8120997
- Lee, H., and S. Noh, 2013. Advanced Statistical Analysis: Theory and Practice. Moonwoosa.
- Malingreau, J.P., 1989. The vegetation index and the study of vegetation dynamics. Ispra Courses. Springer Netherlands.
- Marsett, R.C., J. Qi, P. Heilman, S.H. Biedenbender, M. Carolyn Watson, S. Amer, M. Weltz, D. Goodrich, and R. Marsett, 2006. Remote Sensing for Grassland Management in the Arid Southwest. Rangeland Ecology & Management, 59(5): 530-540. https://doi.org/10.2111/05-201R.1
- McRoberts, R., and E. Tomppo, 2007. Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4): 412-419. https://doi.org/10.1016/j.rse.2006.09.034
- Morisette, J.T., F.A. Heinsch, and S.W. Running, 2006. Monitoring Global Vegetation Using Moderate Resolution Satellites. Eos Trans. AGU, 87(50): 568-568. https://doi.org/10.1029/2006EO500009
- Pat S., and J. Chavez, 1996. Image-Based Atmospheric Corrections-Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62: 1025-1036.
- Roy, D.P., J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, and E. Lindquist, 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6): 3112-3130. https://doi.org/10.1016/j.rse.2008.03.009
- Shen, M., Y. Tang, J. Chen, X. Zhu, and Y. Zheng, 2011. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151(12): 1711-1722. https://doi.org/10.1016/j.agrformet.2011.07.003
- Wald, L., 2002. Data fusion: definitions and architectures: fusion of images of different spatial resolution. Presses des MINES.
- Yang, X., and C.P. Lo, 2002. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23(9): 1775-1798. https://doi.org/10.1080/01431160110075802
- Zhou, Y., J. Chen, X.-h. Chen, X. Cao, and X.-l. Zhu, 2013. Two important indicators with potential to identify Caragana microphylla in xilin gol grassland from temporal MODIS data. Ecological Indicators, 34: 520-527. https://doi.org/10.1016/j.ecolind.2013.06.014
- Zhu, X., J. Chen, F. Gao, X. Chen, and J.G. Masek, 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623. https://doi.org/10.1016/j.rse.2010.05.032
- Zhu, X., E.H. Helmer, F. Gao, D. Liu, J. Chen, and M.A. Lefsky, 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172: 165-177. https://doi.org/10.1016/j.rse.2015.11.016
Cited by
- 온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석 vol.109, pp.4, 2017, https://doi.org/10.14578/jkfs.2020.109.4.361
- 미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 - 서울시 성동구를 대상으로 - vol.24, pp.1, 2017, https://doi.org/10.13087/kosert.2021.24.1.53