Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI

위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용

  • Jin, Yihua (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Zhu, Jingrong (Graduate School, Seoul National University) ;
  • Sung, Sunyong (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Lee, Dong Kun (Department of Landscape Architecture and Rural System Engineering, Seoul National University)
  • 김예화 (서울대학교 협동과정 조경학) ;
  • 주경영 (서울대학교 대학원) ;
  • 성선용 (서울대학교 협동과정 조경학) ;
  • 이동근 (서울대학교 조경지역시스템공학부)
  • Received : 2017.03.06
  • Accepted : 2017.04.04
  • Published : 2017.04.30


Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

시간해상도와 공간해상도가 높은 영상 자료는 효과적인 식생의 모니터링을 위해서 필수적이다. 하지만 단일 센서를 통한 영상은 공간해상도와 시간해상도가 높은 자료를 동시에 제공할 수 없는 한계점이 있다. 최근에는 위성영상의 공간적 해상도를 높이고 시간해상도를 보완하기 위해서 시공간 융합연구가 진행되고 있다. 그 중에서도 FSDAF(Flexible spatiotemporal data fusion) 방법론은 위성영상의 각 밴드를 융합하는 방법으로 적절한 것으로 나타났다. 본 연구에서는 FSDAF 융합기법을 활용하여 MODIS NDVI와 Landsat 영상으로 계산한 NDVI를 융합 후 검증을 실시하였으며 식생 계절 모니터링에서의 활용가능성을 제시하였다. 그 결과, 1월부터 12월까지 융합을 통해 NDVI 예측한 영상은 활엽수, 침엽수, 농지의 계절적인 특징을 잘 반영하고 있었다. 융합된 결과의 검증을 위하여 8월과 10월의 예측한 NDVI와 실제 값(Landsat NDVI) 간의 RMSE 값을 계산한 결과 각각 0.049와 0.085, 상관계수는 0.765, 0.642로 비교적 일치한 것으로 나타났다. 본 연구에서 활용된 FSDAF 시공간 융합 기법은 픽셀기반의 융합기법으로 다양한 공간스케일의 영상과도 융합 가능할 것이며 다양한 식생 관련 연구에 활용될 것으로 기대된다.


Supported by : 산림청, 환경부, 서울대학교


  1. Brown, M.E., D.J. Lary, A. Vrieling, D. Stathakis, and H. Mussa, 2008. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. International Journal of Remote Sensing, 29(24): 7141-7158.
  2. Cammalleri, C., M.C. Anderson, F. Gao, C.R. Hain, and W.P. Kustas, 2014. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agricultural and Forest Meteorology, 186: 1-11.
  3. Chai, T., and R.R. Draxler, 2014. Root mean square error (RMSE) or mean absolute error (MAE)? ? Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7(3): 1247-1250.
  4. Fan, H., X. Fu, Z. Zhang, and Q. Wu, 2015. Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sensing, 7(5): 6041-6058.
  5. Feng, G., J. Masek, M. Schwaller, and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218.
  6. FLAASH, M., 2009. Atmospheric Correction Module: QUAC and FLAASH User's Guide, Version 4.7, Boulder, CO, USA.
  7. Gamon, J.A., K.F. Huemmrich, C.Y. Wong, I. Ensminger, S. Garrity, D.Y. Hollinger, A. Noormets, and J. Penuelas, 2016. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc Natl Acad Sci U S A, 113(46): 13087-13092.
  8. Gao, F., M.C. Anderson, X. Zhang, Z. Yang, J.G. Alfieri, W.P. Kustas, R. Mueller, D.M. Johnson, and J.H. Prueger, 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188: 9-25.
  9. Goward, S.N., G.D. Cruickshanks, and A.S. Hope, 1985. Observed Relation between Thermal Emission and Reflected Spectral Radiance of a Complex Vegetated Landscape. Remote Sensing of Environment, 18: 137-146.
  10. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(12): 195-213.
  11. Jarihani, A., T. McVicar, T. Van Niel, I. Emelyanova, J. Callow, and K. Johansen, 2014. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Indexthen-Blend" and "Blend-then-Index" Approaches. Remote Sensing, 6(10): 9213-9238.
  12. Jin, Y., S. Sung, D. Lee, G. Biging, and S. Jeong, 2016. Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest. Remote Sensing, 8(12): 997.
  13. Lee, H., and S. Noh, 2013. Advanced Statistical Analysis: Theory and Practice. Moonwoosa.
  14. Malingreau, J.P., 1989. The vegetation index and the study of vegetation dynamics. Ispra Courses. Springer Netherlands.
  15. Marsett, R.C., J. Qi, P. Heilman, S.H. Biedenbender, M. Carolyn Watson, S. Amer, M. Weltz, D. Goodrich, and R. Marsett, 2006. Remote Sensing for Grassland Management in the Arid Southwest. Rangeland Ecology & Management, 59(5): 530-540.
  16. McRoberts, R., and E. Tomppo, 2007. Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4): 412-419.
  17. Morisette, J.T., F.A. Heinsch, and S.W. Running, 2006. Monitoring Global Vegetation Using Moderate Resolution Satellites. Eos Trans. AGU, 87(50): 568-568.
  18. Pat S., and J. Chavez, 1996. Image-Based Atmospheric Corrections-Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62: 1025-1036.
  19. Roy, D.P., J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, and E. Lindquist, 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6): 3112-3130.
  20. Shen, M., Y. Tang, J. Chen, X. Zhu, and Y. Zheng, 2011. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151(12): 1711-1722.
  21. Wald, L., 2002. Data fusion: definitions and architectures: fusion of images of different spatial resolution. Presses des MINES.
  22. Yang, X., and C.P. Lo, 2002. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23(9): 1775-1798.
  23. Zhou, Y., J. Chen, X.-h. Chen, X. Cao, and X.-l. Zhu, 2013. Two important indicators with potential to identify Caragana microphylla in xilin gol grassland from temporal MODIS data. Ecological Indicators, 34: 520-527.
  24. Zhu, X., J. Chen, F. Gao, X. Chen, and J.G. Masek, 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623.
  25. Zhu, X., E.H. Helmer, F. Gao, D. Liu, J. Chen, and M.A. Lefsky, 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172: 165-177.