• Title/Summary/Keyword: MODELS

Search Result 41,176, Processing Time 0.056 seconds

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF

Toxicokinetic Models and Data Interpretation (독성동태 모델과 데이터의 해석)

  • 유선동
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.311-324
    • /
    • 2002
  • Toxicokinetic studies are intended to provide critical evaluation of drug disposition at toxico-logical doses and help understand the relationship between blood or tissue levels and the time course of toxic events. Relatively high dose levels wed in toxicokinetics, compared to pharmacokinetics, complicates absorption, protein binding, metabolism and elimination processes. In this mini review, frequently wed toxicokinetic models such as linear compartment models, physiological models, and nonlinear kinetic mod-ec are introduced. In addition, optimization of toxicokinetic studies, their role in the drug development process, and prediction oj human toxicokinetics based on animal data by interspecies scaling are briefly discussed.

A Comparison of Influence Diagnostics in Linear Mixed Models

  • Lee, Jang-Taek
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.125-134
    • /
    • 2003
  • Standard estimation methods for linear mixed models are sensitive to influential observations. However, tools and concepts for linear mixed model diagnostics are rudimentary until now and research is heavily demanded in linear mixed models. In this paper, we consider two diagnostics to evaluate the effects of individual observations in the estimation of fixed effects for linear mixed models. Those are Cook's distance and COVRATIO. Results of our limited simulation study suggest that the Cook's distance is not good statistical quantity in linear mixed models. Also calibration point for COVRATIO seems to be quite conservative.

Review of Gauge R&R Studies by Restricted and Unrestricted Design in the Two-Factor Mixed Model (2인자 혼합모형의 제약과 비제약 설계에 의한 게이지 R&R 연구의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.657-665
    • /
    • 2009
  • The paper reviews gauge R&R studies by two-factor mixed models including random and fixed factors. The two-factor mixed models include restricted models and unrestricted models considering the interaction of two factors. This study also classifies the models according to the number of factors, and the combination of various factors such as random factor, fixed factor, block factor and repetition type.

  • PDF

Analysis of Quasi-Likelihood Models using SAS/IML

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.247-260
    • /
    • 1997
  • The quasi-likelihood models which greatly widened the scope of generalized linear models are widely used in data analysis where a likelihood is not available. Since a quasi-likelihood may not appear to be an ordinary likelihood for any known distribution in the natural exponential family, to fit the quasi-likelihood models the standard statistical packages such as GLIM, GENSTAT, S-PLUS and so on may not directly applied. SAS/IML is very useful for fitting of such models. In this paper, we present simple SAS/IML(version 6.11) program which helps to fit and analyze the quasi-likelihood models applied to the leaf-blotch data introduced by Wedderburn(1974), and the problem with deviance useful generally to model checking is pointed out, and then its solution method is mention through the data analysis based on this quasi-likelihood models checking.

  • PDF

STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR EXTRACELLULAR SIGNAL-REGULATED KINASE PATHWAYS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.457-467
    • /
    • 2013
  • There exist many deterministic models for signaling pathways in systems biology. However the models do not consider the stochastic properties of the pathways, which means the models fit well with experimental data in certain situations but poorly in others. Incorporating stochasticity into deterministic models is one way to handle this problem. In this paper the way is used to produce stochastic models based on the deterministic differential equations for the published extracellular signal-regulated kinase (ERK) pathway. We consider strong convergence and stability of the numerical approximations for the stochastic models.

Impacts of Radio Propagation Model on Mobile Ad-hoc Network (MANET) Performance in Group Mobility Environments

  • Yeo, In-ho;Yang, Hyo-sik;Rhee, JongMyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.62-72
    • /
    • 2010
  • As the applications for Mobile Ad-hoc NETworks (MANETs) have varied, performance analysis has become one of the main research areas. They commonly offer only simple radio propagation models that neglect obstacles of a propagation environment. The radio wave propagation model has a strong impact on the results of the simulation run. In this paper we present the new experimental results of the impacts of the various propagation models on MANETs' performance. Intensive simulations have been presented using the group mobility which models typical ad-hoc situations such as military movements or disaster recovery activities under the supervision of a group leader. Comparisons of conventional simple models with more complicated models, i.e., shadowing, Raleigh, and Ricean models, show that, in spite of the models' popularity, the free space and two-ray ground models are too optimistic in describing real ad-hoc group mobility situations.

  • PDF

FINANCIAL MODELS INDUCED FROM AUXILIARY INDICES AND TWITTER DATA

  • Oh, Jae-Pill
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.529-552
    • /
    • 2014
  • As we know, some indices and data are strong influence to the price movement of some assets now, but not to another assets and in future. Thus we define some asset models for several time intervals; intraday, weekly, monthly, and yearly asset models. We define these asset models by using Brownian motion with volatility and Poisson process, and several deterministic functions(index function, twitter data function and big-jump simple function etc). In our asset models, these deterministic functions are the positive or negative levels of auxiliary indices, of analyzed data, and for imminent and extreme state(for example, financial shock or the highest popularity in the market). These functions determined by indices, twitter data and shocking news are a kind of one of speciality of our asset models. For reasonableness of our asset models, we introduce several real data, figurers and tables, and simulations. Perhaps from our asset models, for short-term or long-term investment, we can classify and reference many kinds of usual auxiliary indices, information and data.