• Title/Summary/Keyword: MOCVD

Search Result 784, Processing Time 0.025 seconds

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Effects of Hydrogen Plasma Treatment of the Underlying TaSiN Film Surface on the Copper Nucleation in Copper MOCVD

  • Park, Hyun-Ah;Lim, Jong-Min;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.435-438
    • /
    • 2004
  • MOCVD is one of the major deposition techniques for Cu thin films and Ta-Si-N is one of promising barrier metal candidates for Cu with high thermal stability. Effects of hydrogen plasma pretreatment of the underlying Ta-Si-N film surface on the Cu nucleation in Cu MOCVD were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy and Auger electron emission spectrometry analyses. Cu nucleation in MOCVD is enhanced as the rf-power and the plasma exposure time are increased in the hydrogen plasma pretreatment. The optimal plasma treatment process condition is the rf-power of 40 Wand the plasma exposure time of 2 min. The hydrogen gas flow rate in the hydrogen plasma pretreatment process does not affect Cu nucleation much. The mechanism through which Cu nucleation is enhanced by the hydrogen plasma pretreatment of the Ta-Si-N film surface is that the nitrogen and oxygen atoms at the Ta-Si-N film surface are effectively removed by the plasma treatment. Consequently the chemical composition was changed from Ta-Si-N(O) into Ta-Si at the Ta-Si-N film surface, which is favorable for Cu nucleation.