• Title/Summary/Keyword: MMPs expression

Search Result 238, Processing Time 0.036 seconds

Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice

  • Lim, Jae-Youn;Kim, Ok-Kyung;Lee, Jeongmin;Lee, Min-Jae;Kang, Namgil;Hwang, Jae-Kwan
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.398-403
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS: Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS: The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS: Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression.

Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes

  • Piao, Mei Jing;Kumara, Madduma Hewage Susara Ruwan;Kim, Ki Cheon;Kang, Kyoung Ah;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.557-563
    • /
    • 2015
  • Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.

Ethanol Extract of Dioscorea batatas Stimulates Procollagen Production and Reduces UVB-induced MMPs Activity in Skin (마 에탄올추출물의 피부 collagen 합성 촉진 및 MMPs 활성 억제효과)

  • Kim, Dae Sung;Jeon, Byoung Kook;Lim, Nan Young;Mun, Yeun Ja;Lee, Young Eun;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 2013
  • Ultraviolet (UV) B irradiation induces the production of matrix metalloproteinases (MMPs), which are responsible for the degradation or synthesis inhibition of collagenous extracellular matrix in connective tissues, causing skin photoaging. In this study, we examined the inhibitory effect of MMP-1 expression of yam extract in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated human dermal fibroblast neonatal (HDFn) cell and preventive effect of UVB-induced damage in hairless mice skin. The synthesis of procollagen and the release of MMP-1 in HDFn cells were measured by EIA kit and MMP-1 assay kit, respectively. UVB radiation was applied to the backs of the mice three times a week for 8 weeks. Mice were randomly divided into three groups, and were topical application with the Dioscorea batatas (DB, 6%) or vehicle. Reduction of TNF-${\alpha}$-induced procollagen synthesis was increased by DB (50 ug/ml), which was higher than positive control group (TGF-${\beta}$). Also, pre-treatment of HDFn cells with DB inhibited TNF-${\alpha}$-induced release of MMP-1. In vivo study, we found that preventive effect of DB against UV-induced epidermal thickness. DB suppressed the expression of MMP-3 and MMP-13 induced by UVB irradiation. Our results show that DB have preventive effect of UV-induced skin damage in hairless mice.

Inhibition of the expression on MMP-2, 9 and morphological changes via human fibrosarcoma cell line by 6,6'-bieckol from marine alga Ecklonia cava

  • Zhang, Chen;Li, Yong;Shi, Xiujuan;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • Matrix Metalloproteinases (MMPs) are a family of zinc-endopeptidases which can degrade extracellular matrix (ECM) components and play important roles in a variety of biological and pathological processes. 6,6'-bieckol isolated and characterized from an edible marine brown alga Ecklonia cava (EC), according to the comprehensive spectral analysis of MS and NMR data. Here the influence of 6,6'-bieckol on expressions of MMPs was examined by zymography and western blot analysis via human fibrosarcoma cell line (HT1080). It is shown that 6,6'-bieckol significantly down regulated the expressions of MMP-2 and -9 in dose-dependent manner. The influence of 6,6'-bieckol on the cell viability and cell behavior of HT1080 cells were also investigated, our dates shown that it suppressed the migration and 3D culture in HT1080 cells. Meanwhile, we explored several signal pathways which may contribute to this process, and found the suppressing of MMPs expressions in HT1080 cells might be due to the suppression of NF-${\kappa}B$ signal pathway.

The effect of tumor necrosis factor (TNF)-α to induce matrix metalloproteinase (MMPs) from the human dental pulp, gingival, and periodontal ligament cells (사람의 치수, 치은, 치주인대 세포에 tumor necrosis factor (TNF)-α로 자극 시 matrix metalloproteinase (MMPs)의 분비에 관한 연구)

  • Rhim, Eun-Mi;Park, Sang-Hyuk;Kim, Duck-Su;Kim, Sun-Young;Choi, Kyoung-Kyu;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2011
  • Objectives: In the present study, three kinds of tissues cells (pulp, gingiva, and periodontal ligament) were investigated if those cells express MMP and TIMP when they were stimulated with neuropeptides (substance P, CGRP) or proinflammatory cytokine, TNF-$\alpha$. Materials and Methods: The cells cultured from human dental pulp (PF), gingiva (GF) and periodontal ligament were (PDLF) stimulated with Mock, SP, TNF-$\alpha$, and CGRP for 24 hrs and 48 hrs. for an RNase protection assay and Enzyme Linked Immunosorbent Assay. Cells (PF, GF and PDLF) seeded in 100 mm culture dish were stimulated with SP ($10^{-5}$, $10^{-8}\;M$) or only with medium (Mock stimulation) for 4hrs and for 24 hrs for RNase Protection Assay, and they were stimulated with CGRP ($10^{-5}\;M$) and TNF-$\alpha$(2 ng/mL) for 24 hrs and with various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for Rnase Protection Assay with a human MMP-1 probe set including MMP 1, 2, 8, 7, 8, 9, 12, and TIMP 2, 3. In addition, cells (PF, GF and PDLF) were stimulated with Mock and various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for 24 hrs and with TNF-$\alpha$(10 ng/mL) for 48 hrs, and the supernatents from the cells were collected for Enzyme Linked Immunosorbent Assay (ELISA) for MMP-1 and MMP-13. Results: The expression of MMPs in PF, GF, PDLF after stimulation with SP and CGRP were not changed compared with Mock stimulation for 4 hrs and 24 hrs. The expression of MMP-1, -12, -13 24 hrs after stimulation with TNF-$\alpha$ were upregulated, however the expression of TIMP-3 in PF, GF, PDLF after stimulation with TNF-$\alpha$ were downregulated. TNF-$\alpha$(2 ng/mL, 10 ng/mL, 100 ng/mL) increased MMP-1 and MMP-12 expression in PF dose dependently for 24 hrs. Conclusions: TNF-$\alpha$ in the area of inflammation may play an important role in regulating the remodeling of dentin, cementum, and alveolar bone.

Regulatory mechanism of Angelica Gigas extract powder on matrix metalloproteinases in vitro and in vivo model (참당귀 추출분말이 in vitro and in vivo model에서 MMPs 조절 기전)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.361-369
    • /
    • 2015
  • The precise mechanism underlying the therapeutic efficacy of an extraction powder of Angelica gigas (AGE) for the treatment of degenerative osteoarthritis was investigated in primary cultured rabbit chondrocytes and in a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. The treatment with AGE (50 μg/mL) effectively inhibited NF-B activation. The anti-inflammatory mechanism was clarified by gelatin zymography and western blotting measurements of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities. The AGE (50 μg/mL) treatment significantly reduced MMP-9 activity. The constituents of AGE— decursinol, decursin, and decursinol angelate—were determined by LC-MS/MS after a 24 hr treatment of rabbit chondrocytes. The contents of the major products, decursin and decursinol angelate, were 3.62±0.47 and 2.14 ±0.36 μg/mg protein, respectively in AGE-treated (50 μg/mL) rabbit chondrocytes. An in vivo animal study on rats fed a diet containing 25, 50, and 100 mg/kg AGE for 3 weeks revealed a significant inhibition of the MMPs in the MIA-induced rat articular cartilage. The genetic expression of arthritic factors in the articular cartilage was examined by RT-PCR of collagen Type I, collagen Type II, aggrecan, and MMP (MMP3, MMP-9, MMP13). Specifically, AGE up-regulated the expression of collagen Type I, collagen Type II, and aggrecan and inhibited MMP levels at all tested concentrations. Collectively, AGE showed a strong specific site of action on MMP regulation and protected against the degeneration of articular cartilage via cellular regulation of MMP expression both in vitro and in vivo.

THE EFFECT OF THE GENISTEIN ON THE PROLIFERATION OF HT1080 AND EXPRESSION OF MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) mRNA (Genistein이 사람 섬유육종 세포주 증식 및 Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) mRNA 발현에 미치는 영향)

  • Kang, Jin-Han;Myoung, Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • Matrix metalloproteinases have long been viewed as ideal candidates for proteinases that enables tumor cells to permeated basement membrane defenses and invade surrounding tissue. There is growing evidence that the MMPs have an expanded role, as they are important for the creation and maintenance of a microenvironment that facilitates growth and angiogenesis of tumors at primary and metastatic sites. MT-MMPs are not secreted but instead remaining attached to cell surfaces. Although not all of the MT-MMPs are fully characterized, MT-MMPs have important role in localizing and activating secreted MMPs. The MMP genes are transcriptionally responsive to a wide variety of oncogene, growth factors, cytokine, and hormones. Currently, a number of MMP inhibitors are being developed and some have reached clinical trials as anti-metastatic or anti-cancer therapies. MT1-MMP is involved in the activation of proMMP-2. MT1-MMP is significant not only as a tumor marker but as a new target for chemotherapy against cancer. The purpose of this study was to evaluate the effects of protein kinase C inhibitor(genistein) on the proliferation of HT1080 and expression of MT1-MMP mRNA. Human fibrosarcoma cell line HT1080 was cultured and divided 2 groups. The experimental group was treated with $100{\mu}M$ genistein and incubated 12h, 24h for $[3^H]-thymidine$ uptake assay and northern hybridization individually. And the control group was treated with same amount of PBS for the above procedures. $[3^H]-thymidine$ incorporation was measured with ${\beta}$ ray detector. And RT-PCR and northern blotting for MT1-MMP mRNA was performed. The results were as follows 1. $[3^H]-thymidine$ uptake was reduced in experimental group with statistical significance. 2. MT1-MMP mRNA expression was significantly reduced in experimental group. These results showed that protein kinase C inhibitor (genistein) inhibited proliferation of HT1080 and almost completely blocked transcription of MT1-MMP mRNA. So, it is possible to use the protein kinase inhibitor (genistein) as anti-metastatic and anti-proliferative agent.

  • PDF

Expression of collagenases (matrix metalloproteinase-1, 8, 13) and tissue inhibitor of metalloproteinase-1 of retrodiscal tissue in temporomandibular joint disorder patients

  • Gho, Won Gyung;Choi, Yuri;Park, Kwang-Ho;Huh, Jong-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.3
    • /
    • pp.120-127
    • /
    • 2018
  • Objectives: The aim of this study was to reveal how collagenases (matrix metalloproteinase [MMP]-1, 8, 13) and tissue inhibitor of metalloproteinase 1 (TIMP-1) are expressed in immunohistochemistry of retrodiscal tissue in temporomandibular joint disorder patients. Materials and Methods: This study was conducted on 39 patients who underwent discoplasty or discectomy. Immunohistochemical staining was undertaken and expression levels of MMP-1, 8, 13, and TIMP-1 were evaluated. The status of internal derangement of disc, osteoarthritis, and joint effusion were analyzed using magnetic resonance imaging (MRI). Disc status observed during operation was also categorized. Results: The more severe disc derangement was observed on MRI, the more increased expression of MMPs and TIMP-1 appeared. Regarding MMP-13 expression, 86.7% of late-stage disc displacement patients showed grade II or III. Expression level of MMPs or TIMP was not statistically significant associated with joint effusion level. In perforation and/or adhesion groups, all patients showed grade II or III expression of MMP-13. Once perforation occurred, MMP-13 showed increased expression with statistical significance. Conclusion: MMP-1 and MMP-13 expression seem to be related to progression of osteoarthritis whereas MMP-8 does not seem to have a specific role with regard to temporomandibular joint disorders. TIMP-1 is considered to be partly related to internal derangement rather than osteoarthritis, but it is not significant.

ROLES OF NADPH OXIDASE AND COX-2 IN UVB-INDUCED MMP EXPRESSION IN HaCaT HUMAN KERATINOCYTES.

  • Beak, Sung-Mok;Jin, Da-Qing;Kim, Jung-Ae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.231.1-231.1
    • /
    • 2003
  • Ultraviolet (UV) irradiation is well known to cause human skin aging and skin cancer through activation of matrix metalloproteinases (MMPs) which are responsible for the degradation of collagen, an extracellular matrix component. However, the molecular mechanisms of UV-induced MMP expression are yet to be defined. In this study, we investigated signaling molecules involved in UV-induced MMP expression in HaCaT human keratinocytes. (omitted)

  • PDF

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.