KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.8
/
pp.3965-3983
/
2017
We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.5
/
pp.556-561
/
2006
It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.
Cloud detection algorithm is being developed as primary one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-IR and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithms and preliminary test results of both algorithms.
This paper presents a multiple DoFs (degrees-of-freedom) prosthetic forearm and sEMG (surface electromyogram) pattern recognition and motion intent classification of forearm amputee. The developed prosthetic forearm has 9 DoFs hand and single-DoF wrist, and the socket is designed considering wearability. In addition, the pattern recognition based on sEMG is proposed for prosthetic control. Several experiments were conducted to substantiate the performance of the prosthetic forearm. First, the developed prosthetic forearm could perform various motions required for activity of daily living of forearm amputee. It was able to control according to shape and size of the object. Additionally, the amputee was able to perform 'tying up shoe' using the prosthetic forearm. Secondly, pattern recognition and classification experiments using the sEMG signals were performed to find out whether it could classify the motions according to the user's intents. For this purpose, sEMG signals were applied to the multilayer perceptron (MLP) for training and testing. As a result, overall classification accuracy arrived at 99.6% for all participants, and all the postures showed more than 97% accuracy.
Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.
Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
Journal of Korean Association for Spatial Structures
/
v.21
no.2
/
pp.99-110
/
2021
This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.
Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.406-412
/
2022
Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.
This paper studies a model to diagnose efficiency reduction of inverter using Multilayer Perceptron(MLP). In this study, two inverter data which started operation at different day was used. A Multilayer Perceptron model was made to predict photovoltaic power data of the latest inverter. As a result of the model's performance test, the Mean Absolute Percentage Error(MAPE) was 4.1034. The verified model was applied to one-year-old and two-year-old data after old inverter starting operation. The predictive power of one-year-old inverter was larger than the observed power by 724.9243 on average. And two-year-old inverter's predictive value was larger than the observed power by 836.4616 on average. The prediction error of two-year-old inverter rose 111.5572 on a year. This error is 0.4% of the total capacity. It was proved that the error is meaningful difference by t-test. The error is predicted value minus actual value. Which means that PV system actually generated less than prediction. Therefore, increasing error is decreasing conversion efficiency of inverter. Finally, conversion efficiency of the inverter decreased by 0.4% over a year using this model.
The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.
Journal of Korea Society of Digital Industry and Information Management
/
v.18
no.4
/
pp.67-75
/
2022
Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.