Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다. (No. NRF-2018R1A4A1026027,2020R1A2C3005687)
References
- Omar, T., Nehdi, M. L., & Zayed, T., "Infrared thermography model for automated detection of delamination in RC bridge decks", Construction and Building Materials, Vol.168, pp.313~327, 2018, doi: 10.1016/j.conbuildmat.2018.02.126
- Sham, J., Chen, N., & Long, L. "Surface crack detection by flash thermography on concrete surface", Insight-Non-Destructive Testing and Condition Monitoring, Vol.50, No.5, pp.240~243, 2008, doi: 10.1784/insi.2008.50.5.240
- Mulaveesala, R., Dua, G., & Arora, V., "Applications of Infrared Thermography for Non-destructive Characterization of Concrete Structures", Advances in Structural Health Monitoring, 2019, doi: 10.5772/intechopen.83636
- Omar, T., & Nehdi, M. L., "Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography", Automation in Construction, Vol.83, pp.360~371, 2017, doi: 10.1016/j.autcon.2017.06.024
- Tong, X., Guo, J., Ling, Y., & Yin, Z. (2011). A new image-based method for concrete bridge bottom crack detection. Proceedings of the 2011 International Conference on Image Analysis and Signal Processing, China, pp.568~571, doi: 10.1109/IASP18108.2011
- Nguyen, H. N., Kam, T. Y., & Cheng, P. Y. (2012). A novel automatic concrete surface crack identification using isotropic undecimated wavelet transform. Proceedings of the 2012 International Symposium on Intelligent Signal Processing and Communications Systems, Taiwan, pp.766~771, doi: 10.1109/ISPACS20401.2012
- Zhu, J., & Song, J., "An Intelligent Classification Model for Surface Defects on Cement Concrete Bridges", Applied Sciences, Vol.10, No.3, pp.972, 2020, doi: 10.3390/app10030972
- Fisher, R. A., "Statistical Methods for Research Workers", Breakthroughs in Statistics, Springer, pp.66~70, 1992, doi: 10.1007/978-1-4612-4380-9_6
- Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, USA, pp.315~323, Retrieved from http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
- Dumitru, C., & Maria, V., "Advantages and Disadvantages of Using Neural Networks for Predictions", Ovidius University Annals, Series Economic Sciences, Vol.13, No.1, pp.444~449, 2013
- Lee, J. (2020). Evaluation of concrete crack depth using UAV, thermal images, and artificial intelligence (Master's thesis). Korea University, Seoul, South Korea.
- Liaw, A., & Wiener, M., "Classification and Regression by randomForest", R News, Vol.2, No.3, pp.18~22, 2002, Retrieved from https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
- Zhang, C., & Ma, Y., "Ensemble Machine Learning: Methods and Applications", Springer Science & Business Media, 2012.
- Friedman, J. H., "Greedy Function Approximation: A Gradient Boosting Machine", Vol.29, No.5, Annals of Statistics, pp.1189~1232, 2001, doi: 10.1214/aos/1013203451
- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J., "Practical Machine Learning Tools and Techniques", 2nd ed., Morgan Kaufmann, pp.578, 2005.
- Zhang, D., "A Coefficient of Determination for Generalized Linear Models", The American Statistician, Vol.71, No.4, pp.310~316, 2017, doi: 10.1080/00031305.2016.1256839
- De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F., "Mean Absolute Percentage Error for regression models", Neurocomputing, Vol.192, pp.38~48, 2016, doi: 10.1016/j.neucom.2015.12.114
- Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P., "Understanding variable importances in forests of randomized trees", Advances in Neural Information Processing Systems, Vol.26, 2013
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E., "Scikit-learn: Machine learning in Python", Journal of Machine Learning Research, Vol.12, pp.2825~2830, 2011, Retrieved from https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
- Altmann, A., Tolosi, L., Sander, O., & Lengauer, T., "Permutation importance: a corrected feature importance measure", Bioinformatics, Vol.26, No.10, pp.1340~1347, 2010, doi: 10.1093/bioinformatics/btq134
- Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J., "Random Forests for Classification in Ecology", Ecology, Vol.88, No.11, pp.2783~2792, 2007, doi: 10.1890/07-0539.1
- Molnar, C., "Interpretable machine learning", Lulu.com, 2020.