• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.032 seconds

Data Fusion of Network and System Call Data For Efficient Intrusion Detection (효율적인 침입탐지를 위한 네트워크 정보와 시스템 콜 정보융합 방법개발)

  • 문규원;김은주;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.208-210
    • /
    • 2004
  • 최근 인터넷, 인트라넷과 같은 통신 기술 발전에 따라 거의 모든 시스템이 서로 연결되었고, 사용자들은 손쉽게 정보를 공유할 수 있게 되었다. 따라서 시스템 침입을 통한 데이터의 변형과 인증 받지 않은 접근과 같은 컴퓨터 범죄가 급속도로 증가하고 있다. 그러므로 이러한 컴퓨터 범죄를 막기 위한 침입 탐지 기술 개발은 매우 중요하다. 전통적인 침입 탐지 모델은 단지 네트워크 패킷 데이터만을 사용하고 있으며. 침입탐지 시스템의 성능을 높이기 위해 서로 다른 분류 알고리즘을 결합하는 방법을 사용해왔다. 그러나 이러한 모델은 일반적으로 성능향상에 있어서 제한적이다. 본 논문에서는 침입탐지 시스템의 성능을 개선하기 위해 네트워크 데이터와 시스템 콜 데이터를 융합하는 방법을 제안하였으며. 데이터 융합 모델로서 Multi-Layer Perceptron (MLP)를 사용하였다. 그리고 DARPA 에서 생성한 네트워크 데이터와 본 논문에서 가상으로 생성한 시스템 콜 데이터를 함께 결합하여 모델을 생성 한 뒤 실험을 수행하였다. 본 논문에서의 실험결과로. 단순히 네트워크 데이터만을 사용한 모델에 비해 시스템 콜 데이터를 함께 결합한 모델이 훨씬 더 놓은 인식률을 보인다는 것을 확인할 수 있다

  • PDF

A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구)

  • Kim, Byung-Soo;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF

Comparison of Various Neural Network Methods for Partial Discharge Pattern Recognition (여러가지 뉴럴네트웍 기법을 적용한 부분방전 패턴인식 비교)

  • Choi, Won;Kim, Jeong-Tae;Lee, Jeon-Sun;Kim, Jung-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1422-1423
    • /
    • 2007
  • This study deals with various neural network algorithms for the on-site partial discharge pattern recognition. For the purpose, the pattern recognition has been carried out on partial discharge data for the typical artificial defect using 9 different neural network models. In order to enhance on-site applicability, artificial defects were installed in the insulation joint box of extra-high voltage xLPE cables and partial discharges were measured by use of the metal foil sensor and a HFCT as a sensor. As the result, it is found out that the accuracy of pattern recognition could be enhanced through the application of the Sigmoid function, the Momentum algorithm and the Genetic algorism on the artificial neural networks. Although Multilayer Perceptron (MLP) algorism showed the best result among 9 neural network algorisms, it is thought that more researches on others would be needed in consideration of on-site application.

  • PDF

Improved Error Backpropagation by Elastic Learning Rate and Online Update (가변학습율과 온라인모드를 이용한 개선된 EBP 알고리즘)

  • Lee, Tae-Seung;Park, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.568-570
    • /
    • 2004
  • The error-backpropagation (EBP) algerithm for training multilayer perceptrons (MLPs) is known to have good features of robustness and economical efficiency. However, the algorithm has difficulty in selecting an optimal constant learning rate and thus results in non-optimal learning speed and inflexible operation for working data. This paper Introduces an elastic learning rate that guarantees convergence of learning and its local realization by online upoate of MLP parameters Into the original EBP algorithm in order to complement the non-optimality. The results of experiments on a speaker verification system with Korean speech database are presented and discussed to demonstrate the performance improvement of the proposed method in terms of learning speed and flexibility fer working data of the original EBP algorithm.

  • PDF

Robust-Detection of Pig Respiratory Diseases in the Noisy Environment (잡음 환경에 강인한 돼지 호흡기 질병 탐지)

  • Lee, Jonguk;Choi, Yongju;Lee, Junhee;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.327-330
    • /
    • 2018
  • 국내 축산 농가들은 대부분 돼지우리의 구역을 나눈 후 해당 구역별로 30여 마리의 돼지들을 합사하여 사육하고 있다. 따라서 전염성이 강한 호흡기 질병이 발병하게 되면 돼지우리 전체로 확산되어 심각한 피해가 발생하게 된다. 본 논문에서는 돼지우리에서 발생하는 다양한 소음에도 강인한 소리 기반의 호흡기 질병 탐지 시스템을 제안한다. 제안된 시스템은 먼저, 소리 신호에서 스펙트로그램 정보를 추출하고, 이를 CNN을 기반으로 돼지 호흡기 질병에 효과적인 특징 벡터를 생성한다. 마지막으로, 추출된 특징 벡터를 MLP에 적용하여 해당 호흡기 질병을 탐지 및 식별과정을 수행한다. 본 연구의 실험 결과, 다양한 잡음 환경에서도 돼지 호흡기 질병 탐지 및 식별이 가능함을 확인하였다.

Model analysis for stock price movements prediction based on technical indicators (기술적 지표 기반의 주가 움직임 예측을 위한 모델 분석)

  • Choi, Jinyoung;Kim, Minkoo
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.885-888
    • /
    • 2019
  • 다양한 요소에 의해 영향을 받는 주식 시장에서 정확한 분석과 예측은 막대한 수익과 최소 손실을 보장한다. 본 논문은 주가 움직임 예측을 위하여 다양한 기술적 지표로부터 적합한 특징을 선택하고 세 가지 분류 알고리즘 LSTM, SVM, MLP 을 통해 향후 1, 3, 5, 7, 10, 15, 20, 25, 30 일 후의 주가 움직임을 예측하는 실험을 진행하였다. LSTM 에서 30 일 후를 예측할 때 74.4%의 가장 높은 분류 정확도를 보였으며 전반적으로 LSTM 을 통한 분류가 우수한 결과를 나타냈다.

Optimization of Posture for Humanoid Robot Using Artificial Intelligence (인공지능을 이용한 휴머노이드 로봇의 자세 최적화)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

Design of Intrusion Detection System Using Neural Networks (신경망을 적용한 침입탐지시스템의 설계)

  • Lee, Jong-Hyouk;Han, Young-Ju;Chung, Tai-Myung
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.1067-1070
    • /
    • 2004
  • 우리는 갈수록 지능화, 분산화, 자동화 되어 가고 있는 침입에 대해 효과적으로 대처하기 위해 신경망을 적용한 침입탐지 시스템을 설계 하였다. 본 논문은 신경망을 학습시키기 위해 학습 견본과 신경망 적용 인자를 정의 하였으며 학습 기법으론 MLP(Multi Layer Perceptron)을 이용 하였다. 새롭게 설계된 침입탐지 시스템의 탐지 모듈은 기존의 패턴 매치 방식의 모듈과 신경망 모듈이 적용되어 보다 정확한 침입 탐지가 가능하다.

  • PDF

Extraction of the OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with Deep Learning (무작위 생성 심층신경망 기반 유기발광다이오드 흑점 성장가속 전산모사를 통한 소자 변수 추출)

  • You, Seung Yeol;Park, Il-Hoo;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.131-135
    • /
    • 2021
  • Numbers of studies related to optimization of design of organic light emitting diodes(OLED) through machine learning are increasing. We propose the generative method of the image to assess the performance of the device combining with machine learning technique. Principle parameter regarding dark spot growth mechanism of the OLED can be the key factor to determine the long-time performance. Captured images from actual device and randomly generated images at specific time and initial pinhole state are fed into the deep neural network system. The simulation reinforced by the machine learning technique can predict the device parameters accurately and faster. Similarly, the inverse design using multiple layer perceptron(MLP) system can infer the initial degradation factors at manufacturing with given device parameter to feedback the design of manufacturing process.

Performance of the Phoneme Segmenter in Speech Recognition System (음성인식 시스템에서의 음소분할기의 성능)

  • Lee, Gwang-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.705-708
    • /
    • 2009
  • This research describes a neural network-based phoneme segmenter for recognizing spontaneous speech. The input of the phoneme segmenter for spontaneous speech is 16th order mel-scaled FFT, normalized frame energy, ratio of energy among 0~3[KHz] band and more than 3[KHz] band. All the features are differences of two consecutive 10 [msec] frame. The main body of the segmenter is single-hidden layer MLP(Multi-Layer Perceptron) with 72 inputs, 20 hidden nodes, and one output node. The segmentation accuracy is 78% with 7.8% insertion.

  • PDF