• 제목/요약/키워드: MLP(Multi-Layer Perceptron)

검색결과 234건 처리시간 0.033초

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level)

  • 이원진;이의훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF

MLP에 기반한 감정인식 모델 개발 (Development of Emotion Recognition Model based on Multi Layer Perceptron)

  • 이동훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.372-377
    • /
    • 2006
  • 본 논문에서, 우리는 뇌파를 이용하여 사용자의 감정을 인식하는 감정인식 모델을 제안한다. 사용자의 감정을 인식하기 위해서는 우선 생체 데이터나 감정 데이터를 포함한 뇌파의 정량적인 데이터를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감정 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감정 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 패턴인식 기법을 사용한다. 본 논문에서 제안한 감정인식 모델의 실험을 위하여 특정 공간 내에서 여러 피험자의 감정별 뇌파를 측정하고, 측정된 뇌파로 집중도 및 안정도를 도출하여 유의미한 데이터로 감정 DB를 구축한다. 감정별 DB를 본 논문에서 제안한 감정인식 모델로 학습한 후 새로운 사용자의 뇌파로 현재 사용자의 감정을 인식한다. 마지막으로 피험자의 수와 은닉 노드의 수에 따른 인식률의 변화를 측정함으로서 뇌파를 이용한 감정인식 모델의 성능을 평가한다.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제9권4호
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

수피 특징 추출을 위한 상용 DCNN 모델의 비교와 다층 퍼셉트론을 이용한 수종 인식 (Comparison of Off-the-Shelf DCNN Models for Extracting Bark Feature and Tree Species Recognition Using Multi-layer Perceptron)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1155-1163
    • /
    • 2020
  • Deep learning approach is emerging as a new way to improve the accuracy of tree species identification using bark image. However, the approach has not been studied enough because it is confronted with the problem of acquiring a large volume of bark image dataset. This study solved this problem by utilizing a pretrained off-the-shelf DCNN model. It compares the discrimination power of bark features extracted by each DCNN model. Then it extracts the features by using a selected DCNN model and feeds them to a multi-layer perceptron (MLP). We found out that the ResNet50 model is effective in extracting bark features and the MLP could be trained well with the features reduced by the principal component analysis. The proposed approach gives accuracy of 99.1% and 98.4% for BarkTex and Trunk12 datasets respectively.

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬 (Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron)

  • 이기희;임인칠
    • 전자공학회논문지B
    • /
    • 제32B권8호
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF

MLP(Multi-Layer Perceptron) 신경망을 활용한 투자 자산분배 시스템 개발 (Development of Investment Distribution System Using MLP(Multi-Layer Perceptron) Neural Network)

  • 박병훈;안민주;양다은;최다연;김정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.746-748
    • /
    • 2022
  • 투자 분배 시스템은 지속성, 수익성, 변동성, 하방경직성 등 각각의 지표를 찾아내는 데이터 분석을 조합한 시스템으로 MLP 신경망을 통한 시황을 예측으로 투자 경험이 부족한 일반 사용자에게 안정적인 투자 분배 전략을 제공한다. 투자분배 시스템 구현을 위하여 추가적으로 금융시장에 대한 회귀분석, 켈리 공식과 같은 도구를 활용하였다.

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출 (Efficient Text Localization using MLP-based Texture Classification)

  • 정기철;김광인;한정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.180-191
    • /
    • 2002
  • 본 논문은 MLP와 MultiCAMShift 알고리즘을 이용한 텍스춰 기반의 영상 내 문자 추출 방법을 제안한다. MLP를 이용한 텍스춰 분석기는 별도의 특징값 추출 단계 없이 다양한 환경의 입력 영상에 대해 효과적으로 문자 확률 영상을 생성하며, 문자 확률 영상 상에서 수행되는 MultiCAMShift 알고리즘은 국소 탐색만으로 효율적으로 문자 영역을 추출할 수 있다.

대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제56권1호
    • /
    • pp.63-74
    • /
    • 2023
  • 높은 신뢰도의 댐 유입량 예측은 효율적인 댐 운영을 위해 필요하다. 최근 다층퍼셉트론(Multi Layer Perceptron, MLP)을 활용하여 댐의 유입량을 예측하는 연구들이 진행되었다. 기존 연구들은 MLP의 연산자 중 자료 간의 최적 상관관계를 찾는 optimizer로 경사하강법(Gradient Descent, GD) 기반의 optimizer를 사용하였다. 하지만, GD 기반의 optimizer들은 지역 최적값으로의 수렴 가능성과 저장공간 부재로 인해 예측성능이 저하된다는 단점이 있다. 본 연구는 GD 기반 optimizer 중 Adaptive moments와 Improved Harmony Search (IHS)를 결합한 Adaptive moments combined with Improved Harmony Search (AdamIHS)를 개발하여 GD 기반 optimizer의 단점을 개선하였다. AdamIHS를 사용한 MLP의 학습 및 예측성능을 평가하기 위해 대청댐 유입량을 학습 및 예측하였으며, GD 기반 optimizer를 사용한 MLP의 학습 및 예측성능과 비교하였다. 학습결과를 비교하면, AdamIHS를 사용한 은닉층 5개인 MLP의 Mean Squared Error (MSE) 평균값이 11,577로 가장 낮았다. 예측결과를 비교하면, AdamIHS를 사용한 은닉층 1개인 MLP의 MSE 평균값이 413,262로 가장 낮았다. 본 연구에서 개발된 AdamIHS를 활용하면 다양한 분야에서 향상된 예측성능을 보여줄 수 있을 것이다.