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ABSTRACT 
 

“Protein Folding Problem” is considered to be one of the “Great Challenges of Computer Science” and prediction of disordered 
protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein 
based on its characteristic of “learning from examples”. Among many machine learning models, we investigate the possibility of 
multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden 
layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as 
training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance 
improvement of protein disorder prediction. 
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1. INTRODUCTION 
 

 Proteins carry out many important functions 
indispensable for life and the study of protein structure is 
important for our understanding of many biological processes 
[1]. When a protein is in its functional state, it is called native. 
The native form of a protein is assumed to have a specific 3D 
structure and the loss of function is assumed to be associated 
with unfolding or loss of the specific 3D structure. Protein 
structure can be determined by the X-ray diffraction, NMR, 
homology alignment, and other methods [2]-[4]. 

The information flow from amino acid sequence to 3D 
structure is very important and this “protein folding problem” is 
considered to be one of the “Great Challenges of Computer 
Science” [5], [6]. The protein folding problem includes the 
prediction of order and disorder. A protein region is defined as 
disordered if it is devoid of stable secondary structure [7], [8]. 
Recognition of disordered regions in a protein is important for 
two reasons: reducing bias in sequence similarity analysis by 
avoiding alignment of disordered regions against ordered ones, 
and helping to delineate boundaries of protein domains to guide 
structural and functional studies [7]. Accurate recognition of 
disordered regions can be applied to enzyme specificity studies, 
function recognition, and drug design [4]. However, there are 
several categories of disorder such as molten globules, partially 
unstructured proteins, and random coils [7]. And no commonly 
agreed definition of protein disorder exists [2]. 

Intrinsically disordered proteins generally have a biased 
amino acid composition [7]. G, S, and P are disorder-promoting 
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amino acids. W, F, I, Y, V and L are order-promoting amino 
acids, while H and T are considered neutral with respect to 
disorder. However, using sequence composition as the sole 
predictive parameter of disorder is not reliable [7]. 

Disordered regions can be indirectly predicted by 
experimental methods such as X-ray crystallography, NMR-, 
Raman-, CD-spectroscopy, and hydrodynamic measurements 
[2]. Each of these methods detects different aspects of disorder 
resulting in several operational definitions of protein disorder. 

Alternatively, machine learning approaches to determine 
whether disordered regions are common have been proposed. 
Romeo et al. proposed PONDR method, which constructed 
feature extraction data through p-feature selection and PCA 
(principal component analysis) and then trained MLP (multi-
layer perceptron) using EBP (error back-propagation) algorithm 
[1]. In the PONDR method, general predictors are trained using 
all available disordered examples. Family-specific predictors 
are trained to predict a particular type of disorder. Also, hybrid 
predictor combines family-specific predictors into more general 
disorder predicting systems by using an arbiter neural network 
decision when the base predictors disagree. However, there is 
severe imbalance between disordered and ordered regions. The 
PONDR method used an artificial procedure to make the data 
balanced. 

Yang and Thomson proposed BBFNN (bio-basis function 
neural network) which resembles GPFN (Gaussian potential 
function network) [3]. In the method, bio-basis function was 
designed based on homology alignment score and the weights 
of the final layer were calculated with pseudo-inverse method. 
They also proposed RONN in order to handle the variable 
length of disordered/ordered regions [4]. RONN has weakness 
particularly in the detection of short regions of disorder and in 
defining the first and last residues of disordered regions. 

http://dx.doi.org/10.5392/IJoC.2013.9.4.011 
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Linding et al. proposed DisEMBL which consisted of 
three neural networks, of which each one detects a separately 
defined disordered regions such as loops/coils, hot loops, and 
missing coordinates in X-ray structure [2]. Possibly because of 
the small number of positive (disordered region) samples, 
Linding et al. insisted that networks with many hidden nodes 
performed no better than those with few. So, they used only 
five hidden nodes but did not consider the imbalance of data to 
train neural networks [2]. 

Data imbalance is reported in a wide range of applications 
such as bio-medical diagnoses [9], gene ontology [10], remote 
sensing [11], credit assessment [12], etc. Classifiers developed 
under the assumption of balanced class priors show poor 
performance for the imbalanced data problems including the 
protein disorder prediction. 

When dealing with the prediction of protein disorder 
problem, in this paper, we considered the imbalance of data to 
train MLPs. Also, we investigate structural possibility of MLP 
for the protein disorder prediction problem. In section 2, we 
briefly introduce the EBP algorithm of MLP and the target node 
method to deal with the imbalanced data in the EBP scheme. In 
section 3, we propose many architectures of MLP for the 
protein disorder prediction problem and show simulation 
results. Finally, section 4 concludes this paper.  

 
 

2. ERROR BACK-PROPAGATION ALGORIHTM AND 
IMBALANCED DATA 

 
Among many supervised learning models in the machine 

learning field, we select MLP as a predictor of disordered 
proteins because of its arbitrary function approximation 
capability [13].  

 

 
Fig. 1. The architecture of a multilayer perceptron. 

 
Consider an MLP consisting of N inputs, H hidden nodes, 
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As a distance measure between the actual and desired outputs, 
we usually use the squared error function for P training 
samples defined by 
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is the error signal and η  is the learning rate. Also, by the 

backward propagation of the error signal, weights jiw ’s are 
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The above weight-updating procedure is the EBP algorithm 
[14], which does not consider any imbalance among classes. 

In the protein disorder prediction problem, the positive 
(disordered region) samples are much less than the negative 
(ordered region) samples. This imbalance severely degrades the 
performance of protein disorder prediction. To resolve the 
imbalance, Romeo et al. adopted an artificial procedure to 
make the data balanced [1]. Linding et al. reported that MLP 
with few hidden nodes is better than MLP with many hidden 
nodes [2]. This strategy degrades the approximation capability 
of MLPs [13]. Contrary to these artificial or heuristic methods, 
the better way is to use an algorithmic approach which was 
proposed to strengthen learning with regards to the positive 
samples [16]. 
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Consider two-class problems with imbalanced data sets 
[15]. Assume that one is the minority class 1C  with 1P  

training samples and the other is the majority class 2C  with 

2P  training samples ( 21 PP << ). If we use the conventional 
EBP algorithm to train the MLP, weight-updating is 
overwhelmed by the majority class samples and this severely 
distorts the boundary between the two classes [16]. This causes 
poor classification performance for the minority class even 
though samples in the minority class have a high 
misclassification cost [16]. 

In order to prevent the boundary distortion, the target node 
method was proposed whose error function was defined by 
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where n and m (n<m) are positive integers and )( p
kt  is coded 

as in (4) [16]. If n=m, 
TNE  is the same as the nth order 

extension of the cross-entropy error function [17]. Then, the 
error signal of the output layer is given by 
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The parameters n and m controls the updating amount of 
weights whether the target nodes are for the minority or 

majority classes. Since n<m and 11 )( ≤≤− p
ky , the error 

signal for the target node of minority class is greater than or 
equal to the error signal for the target node of majority class. 
This effect can prevent the boundary distortion problem [16], 
[18]. 

Also, in order to fix the imbalance of targets for ‘1’ and ‘-

1’, s')( p
kδ are regulated as )( p

kγδ  with the parameter 

21 / PPγ =  in the case that (k=1 and 1)( −=p
kt ) or (k=2 and 

1)( =p
kt ) [16]. Then, the associated weights are updated in 

proportion to the error signals, which is the same procedure as 
in the EBP algorithm [14]. 

 
 
3. MLPs FOR PROTEIN DISORDER PREDICTION 

 
In this section, we train MLPs to be a protein disorder 

predictor. The learning algorithm is the target node method 
which shows better performance in imbalanced data problems 
[16]. Still there are many possibilities in the architecture of 
MLPs and we will try to find a better architecture for the 
protein disorder prediction. 

The protein disorder prediction database was supplied 
from KIAS(Korea Institute for Advanced Study). A total of 
215,612 feature vectors were extracted from 723 proteins with 
15 window size. Each feature vector consists of 330 
dimensional sequence profile, 45 dimensional secondary 

structure profile, 16 dimensional solvent accessibility profile, 
and 17 dimensional hydrophobicity profile. So, the feature 
vector is totally 408 dimensional. 

Firstly, we simulated the protein disorder prediction with a 
single hidden layer MLP of 408 inputs, 20 hidden nodes, and 2 
output nodes. Since the protein disorder prediction is 
imbalanced, we used the target node method given by Eq. (9) 
with n=2 and m=8 to train MLPs for 5000 epochs. Nine times 
simulations were conducted with initializations of MLP 
weights uniformly on [ ]44 101 ,101 −− ××− . This initialization 
range of MLP weights is to avoid premature saturation 
phenomenon of learning [19]. In each simulation, we 
performed five-fold (1-out of-5) cross-validation for 
performance evaluation. When data is imbalanced, the total 
accuracy heavily depends on the accuracy of majority class and 
the total accuracy is not adequate as a performance measure. 
Accordingly, as performance criteria, we used the accuracy of 
minority (disordered region) class and the geometric mean of 
majority (ordered region) class accuracy and minority class 
accuracy [9]. The forty five simulation results consisted of nine 
times MLP initialization and five times cross-validation are 
averaged and the best performance during 5000 training epochs 
is in the Table 1. The accuracy of disordered region class and 
the geometric mean for training samples are 91% and 89.4%, 
respectively. For validation samples, the accuracy of disordered 
region class and the geometric mean are 79.03% and 80.46%, 
respectively.  

 
Table 1. The simulation results for the 408-20-2 MLP. 408 is 
the number of input nodes, 20 is the number of hidden nodes, 
and 2 is the number of output nodes. G-Mean denotes the 
geometric mean 

Training Samples Validation Samples 
Accuracy 
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

Accuracy 
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

91.00% 89.40% 79.03% 80.46% 
 

Alternatively, we tried a hierarchical architecture of MLPs. 
Since each input vector consists of four profiles, we allocate 

)4,3,2,1( =iMLPi  for each profile in the input vector. That is, 

1MLP  is for the 330 dimensional sequence profile, 2MLP  is 

for the 45 dimensional secondary structure profile, 3MLP  is 
for the 16 dimensional solvent accessibility profile, and 

4MLP  is for the 17 dimensional hydrophobicity profile. All 

these )4,3,2,1( =iMLPi  have 20 hidden nodes and two 
output nodes, respectively. The totally eight output node values 
from )4,3,2,1( =iMLPi  are presented to the judge MLP, 
which integrates the classification information of 

)4,3,2,1( =iMLPi  and makes a final decision. The 
architecture of judge MLP is 8-20-2. The initialization and 
training methods are the same with the single hidden layer MLP. 
The performance is evaluated after averaging of forty five 
simulation results and shown in Table 2. 
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Since each profile has different characteristics, 
)4,3,2,1( =iMLPi  show different performances. Among them, 

1MLP  and 3MLP  are better and 4MLP  is the worst. This 
means that the hydrophobicity profile is more complex than the 
other profiles. After integration of information from 

)4,3,2,1( =iMLPi , the judge MLP improves the performance. 
However, the performance of judge MLP for validation 
samples is slightly inferior to that of single hidden layer MLP. 

 
Table 2. The simulation results for the hierarchical MLPs. The 
330-20-2 1MLP  is for the sequence profile, the 45-20-2 

2MLP  is for the secondary structure profile, the 16-20-2 

3MLP  is for the solvent profile, and the 17-20-2 4MLP  is 
for the hydrophobicity profile. The 8-20-2 judge MLP is for the 
final decision. 
 Training Samples Validation Samples 

Accuracy 
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

Accuracy 
(Disorder 

Class) 

G-Mean 
of Two 
Classes 

1MLP  85.86% 85.45% 75.20% 78.63% 

2MLP  74.66% 76.64% 73.04% 75.72% 

3MLP  77.12% 79.31% 77.71% 79.08% 

4MLP  66.35% 70.02% 66.51% 68.86% 
Judge 
MLP 90.27% 86.59% 78.40% 80.37% 

 
The performance of MLP depends on the number of 

hidden nodes as well as the number of hidden layers. Contrary 
to the first and second simulations which used MLPs with a 
single hidden layer, we tried to increase the number of hidden 
layers from one to three. Here, “ MHHHN −−−− 321 MLP” 

denotes MLP with 1H , 2H , and 3H  nodes in the first, 
second, and third hidden layer, respectively. 

Now, we tried the architecture of MLPs such as 408-2-2-
2-2, 408-4-4-4-2, and 408-20-20-20-2. The initialization and 
training methods are the same with the first simulation. Also, 
the performances are evaluated using the averages of forty five 
simulation results and shown in Table 3. Comparing Table 3 
with Table 1, we can find that the three hidden layer MLP with 
20 hidden nodes in each hidden layer attains better performance 
for training samples and similar performance for the validation 
samples. This is due to the specialization to the training 
samples with increased hidden nodes. That is, the (c) case in 
Table 3 has 60320 =×  hidden nodes. 

As a final trial, we simulated the hierarchical architecture 
of MLPs with three hidden layers. Here, each 

)4,3,2,1( =iMLPi  has three hidden layers and the judge MLP 
also has three hidden layers. In each hidden layer of 

)4,3,2,1( =iMLPi  and the judge MLP, we used 20 hidden 
nodes. The initialization and training methods are the same 
with the first simulation. As in the previous simulations, the 
performances evaluated using the average of the forty five 
simulation results are in Table 4. 

Table 3. The simulation results with three hidden layer MLPs, 
whose architectures are (a) 408-2-2-2-2 (two nodes in each 
hidden layer), (b) 408-4-4-4-2 (four nodes in each hidden layer), 
and (c) 408-20-20-20-2 (twenty nodes in each hidden layer). 
 Training Samples Validation Samples 

Accuracy
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

Accuracy 
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

(a) 80.26% 81.11% 80.56% 80.18% 
(b) 82.30% 81.67% 79.65% 80.52% 
(c) 96.98% 89.71% 80.67% 80.12% 

 
Comparing Tables 2 and 4, the performance of judge 

MLPs is similar. However, by increasing the number of hidden 
layer, the Accuracy of Disorder Class of 4MLP  was 
improved very much. Also, the (c) case in Table 3 shows a 
similar tendency. Thus, there are possibilities of performance 
improvement with increasing the number of hidden layers. 
Although we can improve the performance with increased 
hidden nodes, this causes specialization of learning to training 
samples and finally degradation of performance for test 
samples. Therefore, we pursue to increase the number of 
hidden layers. This argument coincides with the interest 
increasing of neural network community in deep belief 
networks [20], [21]. 

 
Table 4. The simulation results for the hierarchical MLPs with 
three hidden layers. 1MLP  is 330-20-20-20-2, 2MLP  is 45-

20-20-20-2, 3MLP  is 16-20-20-20-2, 4MLP  is 17-20-20-
20-2, and the judge MLP for the final decision is 8-20-20-20-2. 
 Training Samples Validation Samples 

Accuracy 
(Disorder 

Class) 

G-Mean  
of Two 
Classes 

Accuracy 
(Disorder 

Class) 

G-Mean 
of Two 
Classes 

1MLP 87.34% 84.51% 74.58% 78.46% 

2MLP 75.15% 76.60% 73.62% 75.89% 

3MLP 76.42% 79.27% 79.62% 79.04% 

4MLP 84.12% 70.95% 84.06% 68.75% 
Judge 
MLP 90.60% 86.38% 78.46% 80.36% 

 
The poor performance of MLP is due to the specialization 

to training samples, or in some cases, MLPs cannot fit the true-
function described by the training samples. As a new strategy to 
resolve these problems, the deep architecture of MLP has been 
proposed [21]. Since the deep belief network has many hidden 
layers, it is very difficult to successfully train the deep network. 
As an initialization methodology for successful training, the 
RBM (Restricted Boltzmann Machine) had been proposed [20]. 
We tried various architectures of MLPs and the fruit we 
attained is that increasing the number of hidden layers can 
improve the performance. So, we will adopt the deep 
architecture of MLPs initialized with the RBM as a next 
challenging method to the protein disorder prediction. 
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5. CONCLUSIONS 
 

In this paper, we investigated the possibilities of MLP as a 
machine learning methodology for protein disorder prediction. 
The single hidden layer MLP, hierarchical MLPs, three hidden 
layer MLP, and hierarchical MLPs with three hidden layers are 
simulated. Contrary to the others, we trained MLPs with the 
target node method which can deal with imbalanced data 
problems. Since the protein disorder prediction is heavily 
imbalanced, MLPs must be trained with the learning algorithm 
which is developed for the imbalanced data. 

With the simulation results, it was very difficult to 
improve the performance for the protein disorder prediction 
problem. Anyway, there was a possibility that increasing the 
number of hidden layers can improve the performance of 
protein disorder prediction. This argument coincides with the 
high interests in the deep architecture field of neural network 
community. As a next step, we will try the deep belief network 
with initialization using RBM for performance improvement of 
protein disorder prediction. 
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