• Title/Summary/Keyword: MJO

Search Result 14, Processing Time 0.015 seconds

On the Relationship between Typhoon Intensity and Formation Region: Effect of Developing and Decaying ENSO (태풍 강도와 발생지역의 상관성 연구: ENSO 발달과 소멸의 영향)

  • Jang, Sae-Rom;Ha, Kyung-Ja
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.29-44
    • /
    • 2008
  • This study investigates the influence of the developing and decaying El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) on the relation between typhoon intensity and its formation. From the long-tenn data of 57 years ($1950{\sim}2006$), we first defined the developing El $Ni{\tilde{n}}o$ years and the neutral years. During the developing El Nino years, the typhoon intensity has a strong relationship with formation region of the tropical cyclone, which results in an increase of the accumulated cyclone energy and intensity of energy of typhoon. During the developing El $Ni{\tilde{n}}o$ year based on $Ni{\tilde{n}}o$ 3.4 SST, the locations for the formation of the category 4+5 typhoon move to the eastward region. The genesis potential function and the low-level cyclonic vorticity have an important role on the formation of strong tropical cyclones, which eventually develop as a typhoon class. In this study, the dynamic potential (DP) function (Gray, 1977) and EOF 1 and EOF 2 time series (RMM 1 and RMM 2) of real-time multivariate MJO (Wheeler and Hendon, 2004) are used to measure the genesis potential and the low-level cyclonic vorticity, respectively. To investigate the influence of the developing and decaying ENSO, we defined the Type I case of the decaying El $Ni{\tilde{n}}o$ that turnovers to La Nina, and the Type II case of the recovering years to the neutral condition. During the decaying El $Ni{\tilde{n}}o$ years as Type I, the locations of the strong DP, RMM 1 and RMM 2 move to the westward more prominently to induce retard of the strong typhoon developing.

A Heuristic Estimation of the Genesis Probability of Tropical Cyclones using Genesis Frequency and Genesis Potential Index

  • Shin, Jihoon;Song, Chanwoo;Kim, Siyun;Park, Sungsu
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.561-571
    • /
    • 2019
  • To understand the genesis of tropical cyclones (TC), we computed TC genesis probability (GPr) by partitioning a highly localized genesis frequency (GFq) into nearby grid boxes in proportion to the spatial coherence of genesis potential index (GPI). From the analysis of TCs simulated by the Seoul National University Atmosphere Model Version 0 and the observed TCs, it was shown that GPr reasonably converges to GFq when averaged over a long-term period in a decent grid size, supporting its validity as a proxy representing a true TC GPr. The composite anomalies of the gridded GPr in association with the Asia summer monsoon, El Nino-Southern Oscillation (ENSO), and the Madden-Julian Oscillation (MJO) are much less noisy than those of GFq, and consequently are better interpretable. In summary, GPr converges to GFq, varies more smoothly than GFq, represents the spatiotemporal variations of GFq better than GPI, and depicts GFq with greater spatial details than other spatially smoothed GFqs.

Analysis of Characteristics for 2016 Changma Rainfall (2016년 한반도 장마 강수 특성 분석)

  • Kim, Jin-Yong;Seo, Kyong-Hwan;Yeh, Sang-Wook;Kim, Hyun-Kyung;Yim, So-Young;Lee, Hyun-Soo;Kown, MinHo;Ham, Yoo-Geun
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.277-290
    • /
    • 2017
  • Characteristics of precipitation in South Korea during the 2016 Changma period (6/18~7/30) are analyzed in great details. El $Ni{\tilde{n}}o$-induced tropical Indian Ocean (IO) basin-wide warming lasts from spring to early summer and induces the western North Pacific subtropical high (WNPSH) circulation anomaly through an equatorial Kelvin wave during the 2016 Changma period. Along the northern edge of the WNPSH, strong precipitation occurred, in particular, over eastern China and southern Japan. During the Changma period, South Korea had the near-normal mean precipitation amount (~332 mm). However, about 226 mm of rain fell in South Korea during 1 July to 6 July, which amounts to 67% of total Changma precipitation in that year. Upper-level synoptic migratory lows and low-level moisture transport played an essential role, especially from 1 July to 3 July, in triggering an abrupt development of fronts over the Korean Peninsula and the eastern continent China. The front over the eastern China migrates progressively eastward, which results in heavy rainfall over the Korean peninsula from 1 to 3 July. In contrast, from 4 to 6 July, the typhoon (NEPARTAK) affected an abrupt northward advance of the North Pacific subtropical high (NPSH). The northward extension of the NPSH strengthens the Changma front and induces the southerly flows toward the Korean peninsula, giving rise to an increase in heavy rainfall. The NEPARTAK is generated due to interaction of the Madden-Julian Oscillation (MJO), equatorial Rossby wave and Kelvin waves.

Academic Development Status of Climate Dynamics in Korean Meteorological Society (한국기상학회 기후역학 분야 학술 발전 현황)

  • Soon-Il An;Sang-Wook Yeh;Kyong-Hwan Seo;Jong-Seong Kug;Baek-Min Kim;Daehyun Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.