DOI QR코드

DOI QR Code

Analysis of Characteristics for 2016 Changma Rainfall

2016년 한반도 장마 강수 특성 분석

  • Kim, Jin-Yong (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Seo, Kyong-Hwan (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Yeh, Sang-Wook (Department of Marine Sciences and Convergence Technology, Hanyang University) ;
  • Kim, Hyun-Kyung (Korea Meteorological Administration) ;
  • Yim, So-Young (Korea Meteorological Administration) ;
  • Lee, Hyun-Soo (Korea Meteorological Administration) ;
  • Kown, MinHo (Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology) ;
  • Ham, Yoo-Geun (Department of Oceanography, Chonnam National University)
  • Received : 2017.04.26
  • Accepted : 2017.09.01
  • Published : 2017.09.30

Abstract

Characteristics of precipitation in South Korea during the 2016 Changma period (6/18~7/30) are analyzed in great details. El $Ni{\tilde{n}}o$-induced tropical Indian Ocean (IO) basin-wide warming lasts from spring to early summer and induces the western North Pacific subtropical high (WNPSH) circulation anomaly through an equatorial Kelvin wave during the 2016 Changma period. Along the northern edge of the WNPSH, strong precipitation occurred, in particular, over eastern China and southern Japan. During the Changma period, South Korea had the near-normal mean precipitation amount (~332 mm). However, about 226 mm of rain fell in South Korea during 1 July to 6 July, which amounts to 67% of total Changma precipitation in that year. Upper-level synoptic migratory lows and low-level moisture transport played an essential role, especially from 1 July to 3 July, in triggering an abrupt development of fronts over the Korean Peninsula and the eastern continent China. The front over the eastern China migrates progressively eastward, which results in heavy rainfall over the Korean peninsula from 1 to 3 July. In contrast, from 4 to 6 July, the typhoon (NEPARTAK) affected an abrupt northward advance of the North Pacific subtropical high (NPSH). The northward extension of the NPSH strengthens the Changma front and induces the southerly flows toward the Korean peninsula, giving rise to an increase in heavy rainfall. The NEPARTAK is generated due to interaction of the Madden-Julian Oscillation (MJO), equatorial Rossby wave and Kelvin waves.

Keywords

References

  1. Ding, R. Q., K.-J., Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059-1071, doi:10.1007/s00382-009-0555-2.
  2. Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 3960-3968. https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2
  3. Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240-241.
  4. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700. https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
  5. Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20. https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2
  6. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643, doi:10.1175/BAMS-83-11-1631.
  7. Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322-340. https://doi.org/10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2
  8. Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790-2809. https://doi.org/10.1175/JAS3520.1
  9. Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.
  10. Kim, A.-H., and T.-Y. Lee, 2016: A study of a heavy rainfall event in the middle Korean peninsula in a situation of a synoptic-scale ridge over the Korean peninsula. Atmosphere, 26, 577-598, doi:10.14191/Atmos.2016.26.4.577 (in Korean with English abstract).
  11. Kim, J.-Y., K.-H. Seo, J.-H. Son, and K.-J. Ha, 2017: Development of statistical prediction models for Changma precipitation: An ensemble approach. Asia-Pac. J. Atmos. Sci., 53, 207-216, doi:10.1007/s13143-017-0027-2.
  12. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917-932. https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
  13. Korea Meteorological Administration, 2011: Changma White Paper. Korea Meteorological Administration, 268 pp.
  14. Korea Meteorological Administration, 2012: Learn from Case of the Last 20 Years, Top 10 Heavy Rainfall. Korea Meteorological Administration, 47 pp.
  15. Korea Meteorological Administration, 2017: 2016 Abnormal climate Report. Korea Meteorological Administration, 190 pp.
  16. Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern. Proc. Natl. Acad. Sci. USA, 110, 7574-7579, doi:10.1073/pnas.1215582110.
  17. Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for Changma. Wea. Forecasting, 28, 1304-1321, doi:10.1175/WAF-D-13-00003.1.
  18. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean Peninsula their classification. J. Korean Meteor. Soc., 43, 367-396.
  19. Lombardo, K., 2004: Influence of equatorial Rossby waves on tropical cyclogenesis in the western Pacific. M.S. thesis, University at Albany, State University of New York, 135 pp.
  20. Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian oscillation, barotropic dynamics, and north Pacific tropical cyclone formation. Part I: observations. J. Atmos. Sci., 58, 2545-2558. https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2
  21. NOAA, 2017: Global Climate Report - Annual 2016, published online January 2017 [Available online at https://www.ncdc.noaa.gov/sotc/global/201613.].
  22. Park, C.-G., and T.-Y. Lee, 2008: Structure of mesoscale heavy precipitation systems originated from the changma front. Atmosphere, 18, 317-338 (in Korean with English abstract).
  23. Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A New Look at Changma. Atmosphere, 21, 109-121 (in Korean with English abstract).
  24. Seo, K.-H., J.-H. Choi, and S.-D. Han, 2012: Factors for the simulation of convectively coupled Kelvin waves. J. Climate, 25, 3495-3514, doi:10.1175/JCLI-D-11-00060.1.
  25. Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by air mass variability and its prediction. J. Climate, 28, 6221-6233, doi:10.1175/JCLI-D-14-00526.1.
  26. Shin, C.-S., and T.-Y. Lee, 2005: Development mechanisms for the heavy rainfalls of 6-7 August 2002 over the middle of the Korean peninsula. J. Meteor. Soc. Japan, 83, 683-709. https://doi.org/10.2151/jmsj.83.683
  27. Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30-53. https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2
  28. Sun, J., and T.-Y. Lee, 2002: A numerical study of an intense quasi-stationary convection band over the Korean Peninsula. J. Meteor. Soc. Japan, 80, 1221-1245. https://doi.org/10.2151/jmsj.80.1221
  29. Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718-2722, doi:10.1073/pnas.1214626110.
  30. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399. https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
  31. Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Nino. J. Climate, 22, 730-747. https://doi.org/10.1175/2008JCLI2544.1
  32. Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/ 2007GL030526.