• 제목/요약/키워드: MIT-BIH database

검색결과 122건 처리시간 0.022초

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 (Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1542-1550
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 (Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1341-1347
    • /
    • 2020
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.

1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계 (Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks)

  • 김성우;김인주;신승철
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.37-43
    • /
    • 2020
  • 최근 심전도 (ECG) 신호를 사용하여 심장병을 진단하는 많은 연구가 이루어지고 있다. 이러한 심전도 신호는 비정상적인 심장 상태를 나타내는 부정맥을 모니터링하고 진단하는 데 유용하게 쓰인다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 ECG 신호에 대하여 부정맥을 분류하는 시스템을 제안한다. 제안하는 신경망 알고리즘은 부정맥 신호의 특징을 세밀하게 추출하도록 4개의 합성곱 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. MIT-BIH 부정맥 데이터베이스에 대해 학습한 신경망은 시뮬레이션을 통해 99% 이상의 정확도의 분류 성능을 가진다는 것을 보여준다. 비교적 합성곱 커널의 개수가 많을수록 ECG 신호의 특성을 더 잘 나타내기 때문에 좋은 성능을 나타내는 것으로 분석되었다. 또한 제안된 신경망을 활용한 실제 시스템을 구현하여 실시간으로 부정맥을 분류하는 결과를 검증하였다.

심전도 신호의 특징 값을 이용한 암호화 (Encryptions of ECG Signals by Using Fiducial Features)

  • 김정환;김경섭;신승원;류근호
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2380-2385
    • /
    • 2011
  • With the advent of ubiquitous healthcare technology to provide a patient with the necessary medical services in anywhere and anytime scheme, the importance of securing safe communication without tampering the medical data by the unauthorized users is getting more emphasized. With this aim, a novel method for constructing encryption keys on the basis of biometrical measurement of electrocardiogram (ECG) is suggested in this study. The experiments on MIT/BIH database show that our proposed method can achieve safe communication by successfully ciphering and deciphering ECG data including premature ventricular contraction arrhythmia signal with compromising its fiducial features as biometric key to transmit the data via the internet network.

심전도 신호를 이용한 심장 질환 진단에 관한 연구 (A Study of ECG Based Cardiac Diseases Diagnoses)

  • 김현동;윤재복;김현동;김태선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF

심장질환진단을 위한 ECG파형의 특징추출 (Feature Extraction of ECG Signal for Heart Diseases Diagnoses)

  • 김현동;민철홍;김태선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF

Wavelet filter를 이용한 QRS complex와 R-wave의 검출 알고리듬 (An Algorithm to Detect QRS Complex and R-wave Using Wavelet Filter)

  • 태장환;송인호;이두수;김선일;김인영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2000
  • 심전도에서 QRS complex와 R-wave의 검출은 부정맥 진단, 심전도의 특성점 검출 기준, heart rate variability(HRV) 측정에 있어서 중요하나, 시시각각 변화하는 생리적 변화와 여러 가지 노이즈로 인해 검출이 쉽지 않다 제안된 알고리듬에서는 wavelet filter banks를 이용하여 대칭적 enhanced 신호와 noise 와 같은 very high frequency 성분이 제거된 ECG에 근사화 된 approximated 신호를 얻는다. Enhanced 신호로부터 QRS complex의 위치를 검출하고, 검출된 위치의 주변에서 대칭적 wavelet의 특성이 반영된 dominant한 peak의 위치정보, 즉 R wave의 후보점을 얻는다. 이 위치 정보를 이용하여 enhanced 신호에서 각 peak에서의 크기, approxi-mated 신호에서 각 peak 주변에서의 기울기 변화, 기울기 부호 등을 고려하여 R-wave의 위치를 원래의 ECG 신호에서 얻는다. MIT/BIH database에 적용한 결과 99.6%의 QRS complex검출률과 92.9%의 R-wave 검출률을 보였다.

  • PDF

ECG Data Coding Using Piecewise Fractal Interpolation

  • 전영일;정형민;윤영로;윤형로
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 추계학술대회
    • /
    • pp.134-137
    • /
    • 1994
  • In this paper, we describe an approach to ECG data coding based on a fractal theory of iterated contractive transformations defined piecewise. The main characteristic of this approach is that it relies on the assumption that signal redundancy can be efficiently captured and exploited through piecewise self-transformability on a block-wise basis. The variable range size technique is employed to reduce the reconstruction error. Large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are used for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. A high compression ratio is achieved with a relatively low reconstruction error.

  • PDF

Flash Memory Card를 이용한 Intelligent Ambulatory Monitoring 시스템 설계 (Design of an Intelligent Ambulatory Monitoring System Using Flash Memory Card)

  • 송근국;이경중;윤형로
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.330-333
    • /
    • 1997
  • In this paper, we designed a low power and small-sized, light weighted intelligent ambulatory monitoring system using a flash memory card. The system's hardware specifications are as follows: 2 channels, 8bit/250Hz sampling rate, 20M byte storage capacity, a single-chip microcontroller (68HC11E9). To easily interface with PC based system, FFS(Flash File System) was used. We obtained the QRS detection rate of 99.14 through the evaluation with MIT/BIH database.

  • PDF

기울기추적파를 이용한 심전도의 기저선 변동 제거방법의 비교 연구 (A Study on Elimination Methods of Baseline Wander for ECG using Slope Tracing Waves)

  • 주장규;이기영;김정국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.247-249
    • /
    • 2006
  • This paper describes a new method to eliminate the baseline wander for ECG based on waveform morphology analysis. This method uses the descending slope tracing waves[3] to separate the baseline wander from ECG and approximates the separated baseline wander to a corresponding approximated S-waves contour, and finally, subtracts the approximated S-waves contour from the original ECG. To verify its efficacy and validity in practical applications, this method has been applied to MIT/BIH database and compares this method with the other method employing the ascending slope tracing waves to remove a baseline from ECG[4].

  • PDF