• 제목/요약/키워드: MIS(Metal Insulator Semiconductor)

검색결과 79건 처리시간 0.028초

Electron Trapping and Transport in Poly(tetraphenyl)silole Siloxane of Quantum Well Structure

  • Choi, Jin-Kyu;Jang, Seung-Hyun;Kim, Ki-Jeong;Sohn, Hong-Lae;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2012
  • A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane (PSS), was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings are responsible for electron trapping owing to their low-lying LUMO, while the Si-O-Si inorganic linkages of high HOMO-LUMO gap provide the intrachain energy barrier for controlling electron transport. Such an alternation of the organic and inorganic moieties in a polymer may give an interesting quantum well electronic structure in a molecule. The PSS thin film was fabricated by spin-coating of the PSS solution in THF organic solvent onto Si-wafer substrates and curing. The electron trapping of the PSS thin films was confirmed by the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure. And the quantum well electronic structure of the PSS thin film, which was thought to be the origin of the electron trapping, was investigated by a combination of theoretical and experimental methods: density functional theory (DFT) calculations in Gaussian03 package and spectroscopic techniques such as near edge X-ray absorption fine structure spectroscopy (NEXAFS) and photoemission spectroscopy (PES). The electron trapping properties of the PSS thin film of quantum well structure are closely related to intra- and inter-polymer chain electron transports. Among them, the intra-chain electron transport was theoretically studied using the Atomistix Toolkit (ATK) software based on the non-equilibrium Green's function (NEGF) method in conjunction with the DFT.

  • PDF

Interfacial Properties of Atomic Layer Deposited Al2O3/AlN Bilayer on GaN

  • Kim, Hogyoung;Kim, Dong Ha;Choi, Byung Joon
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.268-272
    • /
    • 2018
  • An $Al_2O_3/AlN$ bilayer deposited on GaN by atomic layer deposition (ALD) is employed to prepare $Al_2O_3/AlN/GaN$ metal-insulator-semiconductor (MIS) diodes, and their interfacial properties are investigated using X-ray photoelectron spectroscopy (XPS) with sputter etch treatment and current-voltage (I-V) measurements. XPS analyses reveal that the native oxides on the GaN surface are reduced significantly during the early ALD stage, indicating that AlN deposition effectively clelans up the GaN surface. In addition, the suppression of Al-OH bonds is observed through the ALD process. This result may be related to the improved device performance because Al-OH bonds act as interface defects. Finally, temperature dependent I-V analyses show that the barrier height increases and the ideality factor decreases with an increase in temperature, which is associated with the barrier inhomogeneity. A Modified Richardson plot produces the Richardson constant of $A^{**}$ as $30.45Acm^{-2}K^{-2}$, which is similar to the theoretical value of $26.4Acm^{-2}K^{-2}$ for n-GaN. This indicates that the barrier inhomogeneity appropriately explains the forward current transport across the $Au/Al_2O_3/AlN/GaN$ interface.

인라인 스퍼터 시스템을 이용한 펄스의 주파수 변화에 따른 NbOx 박막 특성에 관한 연구 (A Study on the Characteristics of NbOx Thin Film at Various Frequencies of Pulsed DC Sputtering by In-Line Sputter System)

  • 엄지미;오현곤;권상직;박정철;조의식;조일환
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.44-48
    • /
    • 2013
  • Niobium oxide($Nb_2O_5$) films were deposited on p-type Si wafers at room temperature using in-line pulsed-DC magnetron sputtering system with various frequencies. The different duty ratios were obtained by varying the frequency of pulsed DC power from 100 to 300 kHz at the fixed reverse time of $1.5{\mu}s$. From the thickness of the sputtered $NbO_x$ films, it was possible to obtain much higher deposition rate in case of pulsed-DC sputtering than RF sputtering. However, the similar leakage currents and structural characteristics were obtained from the metal-insulator-semiconductor(MIS) structure fabricated with the $NbO_x$ films and the x-ray photoelectron spectroscopy(XPS) results in spite of the different deposition rates. From the experimental results, the $NbO_x$ films sputtered by pulsed-DC sputtering are expected to be used in the fabrication process instead of RF sputtering.

펄스 레이저 방식으로 증착된 $MgTiO_3$ 박막의 전기적 특성 분석

  • 안순홍;노용한;강신충;이재찬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.71-71
    • /
    • 2000
  • 본 연구에서는 차세대 마이크로파 유전체 소자로서의 응용을 목적으로 펄스 레이저 방식에 의하여 증착된 MgTiO3 박막의 전기적 특성을 종합적으로 연구 분석하였다. 이를 바탕으로 MgTiO3 박막의 유전손실 등과 같은 열화를 야기시키는 박막 내부 또는 박막과 기판간의 결함의 특성을 파악하여 열화 메카니즘을 분석하였다. MgTiO3는 마이크로파 영역에서의 우수한 유전특성과 같은 낮은 유전손실을 가지며, 온도 안정성 또한 우수하다. 현재까지 벌크 세라믹 MgTiO3 의 응용 광범위하게 연구되어 왔으나 박막의 제조공정 및 전기적 특성 분석은 미흡한 형편이다. 따라서 벌크 세라믹과는 특성이 상이한 박막의 전기적 특성분석 및 연구가 필요하다. 분석을 위한 소자의 기본 구조로서 Metal-Insulator-Semiconductor(MIS) 구조를 채택하였다. MgTiO3 박막을 증착하기 위한 기판으로는 n형 Si(100)기판과 p형 Si(100)기판을 사용하였고, Si 기판 위에 급속 열처리기 (RTP)를 이용하여 SiO2를 ~100 두께로 성장시킨 것과 성장시키지 않은 것으로 구분하여 제작하였다. MgTiO3 박막은 펄스 레이저 증착 방식(PLD)에 의하여 약 2500 두께로 증착되었으며, 200mTorr 압력의 산소 분위기 하에서 기판의 온도를 40$0^{\circ}C$~55$0^{\circ}C$까지 5$0^{\circ}C$간격으로 변화시키며 제작하였다. 상하부의 전극 금속으로는 Al을 이용하였으며, 열증발 증착기로 증착하였다. 증착된 MgTiO3 박막의 결정구조를 확인하기 위하여 XRD 분석을 수행하였으며, 박막의 전기적 특성을 분석하기 위해 Boonton7200 C-V 측정기와 HP4140P를 이용한 경우에는 C-V 곡선에 이력현상이 나타났으나, MgTiO3/SiO2를 이용한 경우에는 이력현상이 나타나지 않았고, 유전율은 감소하는 것으로 나타났다. I-V 측정 결과, 절연층으로 MgTiO3/SiO2를 이용한 경우에는 MgTiO3만을 절연층으로 사용한 경우에 비해 동일한 전계에서 낮은 누설전류 값을 가짐을 알 수 있었다. 또한 박막의 증착온도가 증가함에 따라서 C-V 곡선의 위치가 양의 방향으로 이동함을 확인하였다. 위의 현상은 기판의 종류에 관계없이 발생하는 것으로 보아 벌크 또는 계면에 존재하는 결함에 의한 것으로 추정된다. 현재 C-V 곡선의 이동 원인과 I-V 곡선의 누설전류 메카니즘을 분석 중에 있으며 그 결과를 학회에서 발표할 예정이다.

  • PDF

입체표면 폴리실리콘 전극에서 PECVD $Ta_2O_5$ 유전박막의 전기적 특성 (Electrical Characteristics of PECVD $Ta_2O_5$ Dielectic Thin Films on HSG and Rugged Polysilicon Electrodes)

  • 조영범;이경우;천희곤;조동율;김선우;김형준;구경완;김동원
    • 한국진공학회지
    • /
    • 제2권2호
    • /
    • pp.246-254
    • /
    • 1993
  • DRAM 커패시터에서 축정용량을 증대시키기 위한 기초연구로서 2가지 방법을 시도하였다. 첫째로, 커패시터의 유효 표면적을 증대시키기 위해 HSG(hemispherical grain)와 rugged 형태의 표면형상을 갖는 폴리실리콘 전극을 저압 화학기상증착법을 이용하여 제잘하였다. 그 결과 기존의 평평한 폴리실리콘 전극에 비하여 유효면적이 증대된 폴리실리콘 전극이 형성되었다. 둘째로, 고유 전상수를 갖는 $Ta_2O_5$ 박막을 각각의 전극에 플라즈마 화학기상증착법으로 증착시키고 후열처리한 후 전기적 특성변화를 조사하였다. MIS(metal-insulator-semiconductor) 구조의 커패시터를 제작하여 전기적 특성을 측정한 결과, HSG와 rugged 형상의 표면을 갖는 전극에서 기존의 평평한 표면을 갖는 전극에 비하여 축전용량은 1.2~1.5배까지 증대하였으나, 주설전류는 표면적의 증가에 따라 함께 증가함을 보였다. TDDB 특성에서도 HSG와 rugged 형상의 표면을 갖는 전극들이 평평한 표면형상에 비하여 더 열화되었음을 보여주었다. 이상과 같은 결과는 $Ta_2O_5$ 유전박막을 이용한 차세대 DRAB 커패시터 연구에 기초자료로 이용될 수 있을 것으로 본다.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

Dielectric Properties of $Ta_2O_{5-X}$ Thin Films with Buffer Layers

  • Kim, In-Sung;Song, Jae-Sung;Yun, Mun-Soo;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제12C권4호
    • /
    • pp.208-213
    • /
    • 2002
  • The present study describe the electrical performance of amorphous T $a_2$ $O_{5-X}$ fabricated on the buffer layers Ti and Ti $O_2$. T $a_2$ $O_{5-X}$ thin films were grown on the Ti and Ti $O_2$ layers as a capacitor layer using reactive sputtering method. The X-ray pattern analysis indicated that the two as-deposited films were amorphous and the amorphous state was kept stable on the RTA(rapid thermal annealing) at even $700^{\circ}C$. Measurements of dielectric properties of the reactive sputtered T $a_2$ $O_{5-X}$ thin films fabricated in two simple MIS(metal insulator semiconductor), structures, (Cu/T $a_2$ $O_{5}$ Ti/Si and CuT $a_2$ $O_{5}$ Ti $O_2$Si) show that the amorphous T $a_2$ $O_{5}$ grown on Ti showed high dielectric constant (23~39) and high leakage current density(10$^{-3}$ ~10$^{-4}$ (A/$\textrm{cm}^2$)), whereas relatively low dielectric constant (~15) and tow leakage current density(10$^{-9}$ ~10$^{-10}$ (A/$\textrm{cm}^2$)) were observed in the amorphous T $a_2$ $O_{5}$ deposited on the Ti $O_2$ layer. The electrical behaviors of the T $a_2$ $O^{5}$ thin films were attributed to the contribution of Ti- $O_2$ and the compositionally gradient Ta-Ti-0, being the low dielectric layer and high leakage current barrier. In additional, The T $a_2$ $O_{5}$ Ti $O_2$ thin films exhibited dominant conduction mechanism contributed by the Poole-Frenkel emission at high electric field. In the case of T $a_2$ $O_{5}$ Ti $O_2$ thin films were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated thin films.films.

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.