• Title/Summary/Keyword: MIMO technology

Search Result 362, Processing Time 0.024 seconds

A Study on Radar Waveform - Polyphase Sequence (레이더 파형 연구 - 다위상 시퀀스)

  • Yang, Jin-Mo;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.673-682
    • /
    • 2010
  • This paper describes and analyzes a various generation methods of the mutually orthogonal polyphase sequences with low cross-correlation peak sidelobe and low autocorrelation peak sidelobe levels. The mutual orthogonality is the key requirement of multi-static or MIMO(Multi-Input Multi-Output) radar systems which provides the good target detection and tracking performance. The polyphase sequences, which are generated by SA(Simulated Annealing) and GA(Genetic Algorithm), have been analyzed with ACF(Autocorrelation Function) PSL(Peak Sidelobe Level) and CCF(Crosscorrelation Function) level at the matched filter output. Also, the ambiguity function has been introduced and simulated for comparing Doppler properties of each sequence. We have suggested the phase selection rule for applying multi-static or MIMO systems.

A Comparative Study of List Sphere Decoders for MIMO Systems

  • Pham, Van-Su;Yoon, Giwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.143-146
    • /
    • 2009
  • In this paper, we investigated the list sphere decoders (LSD) for multiple-input multiple-output (MIMO) systems. We showed that the ordering procedures play an important role in LSD in order to achieve the low complexity without degrading the bit-error-rate (BER) performance. Then, we proposed a novel ordering algorithm for the LSD which uses a look-up table and simply comparative operations. Comparative results in terms of BER performance and computational complexity are provided through computer simulations.

  • PDF

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh;Khuong Ho-Van
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.432-445
    • /
    • 2024
  • This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

Transceiver Design Using Local Channel State Information at Relays for A Multi-Relay Multi-User MIMO Network

  • Cho, Young-Min;Yang, Janghoon;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2616-2635
    • /
    • 2013
  • In this paper, we propose an iterative transceiver design in a multi-relay multi-user multiple-input multiple-output (MIMO) system. The design criterion is to minimize sum mean squared error (SMSE) under relay sum power constraint (RSPC) where only local channel state information (CSI)s are available at relays. Local CSI at a relay is defined as the CSI of the channel between BS and the relay in the $1^{st}$ hop link, and the CSI of the channel between the relay and all users in the $2^{nd}$ hop link. Exploiting BS transmitter structure which is concatenated with block diagonalization (BD) precoder, each relay's precoder can be determined using local CSI at the relay. The proposed scheme is based on sequential iteration of two stages; stage 1 determines BS transmitter and relay precoders jointly with SMSE duality, and stage 2 determines user receivers. We verify that the proposed scheme outperforms simple amplify-and-forward (SAF), minimum mean squared error (MMSE) relay, and an existing good scheme of [13] in terms of both SMSE and sum-rate performances.

Evaluation of Interference Alignment for MIMO-IC based on IEEE 802.11n (IEEE 802.11n 기반 MIMO-IC의 간섭정렬 성능평가)

  • Bae, Insan;Yun, Heesuk;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, The existing interference alignment algorithms were analyzed in Rayleigh fading channel environment. The interference alignment techniques are divided to two parts. First thing is Iterative-method, another is Linear-method. Iterative method needs local channel info, but it has the constraint of iteration. On the other hand Linear-method must have global channel info, but has free of iteration and better performance. This paper evaluates the performance of interference alignment algorithms in Rayleigh fading channel of outdoor environment and WLAN channel based on IEEE 802.11n of indoor environment.

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Reduced Complexity Scheduling Method with MIMO Interference Alignment for Mutually Interfering Broadcast Channels (상호 간섭 Broadcast 채널을 위한 MIMO 간섭 정렬을 이용한 복잡도를 줄인 스케쥴링)

  • Park, Hae-Wook;Park, Seok-Hwan;Sung, Hak-Jea;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.601-611
    • /
    • 2012
  • In this paper, we first study the spatial multiplexing gain for the 3-cell interfering broadcast channels (IFBC) where all base stations and mobile users are equipped with multiple antennas. Then, we present the IA scheme in conjunction with user selection which outperforms the TDMA technique in the IFBC environment. The optimal scheduling method utilizes multiuser diversity to achieve a significant fraction of sum capacity by using an exhaustive search algorithm. To reduce the computational complexity, a suboptimal scheduling method is proposed based on a coordinate ascent approach.