• Title/Summary/Keyword: MIMO characteristics

Search Result 97, Processing Time 0.029 seconds

An adaptive control method for the nonlinear process (비선형 공정의 적응제어 방법)

  • Lo, K.;Yoon, E. S.;Yeo, Y. K.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.331-336
    • /
    • 1989
  • Under the condition of stable inverse a billinear model predictive control method for SISO and MIMO system with time delay is derived. For processes subject to a bounded disturbance the proposed control method with a classical recursive adaptation algorithm was shown to be stable in the sense of the convergence of parameter estimates and the boundedness of the control error. Several simulation results demonstrate the characteristics of the proposed bilinear model predictive control method.

  • PDF

A Study on Identification of State-Space Model for Refuse Incineration Plant (쓰레기 소각플랜트의 상태공간모델 규명에 관한 연구)

  • Hwang, l-Cheol;Jeon, Chung-Hwan;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.354-362
    • /
    • 2000
  • This paper identifies a discrete-time linear combustion model of Refuse Incineration Plant(RIP) which characterizes steam generation quantity, where the RIP is considered as a MIMO system with thirteen-inputs and one-output. The structure of RIP model is described as an ARX model which are analytically obtained from the combustion dynamics. Furthermore, using the Instrumental Variable(IV) identification algorithm, model structure and unknown parameters are identified from experimental input-output data sets, In result, it is shown that the identified ARX model well approximates the input-output combustion characteristics given by experimental data sets.

A study on robust multivariable control of stewart platform type motion simulator (스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

Characteristics of Wireless Distributed Communication System under the Overlay Convergent Networks (중첩 융합 네트워크에서 분산 무선 통신 시스템의 특성)

  • Cheon, EunJi;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.986-992
    • /
    • 2012
  • In order to support quickly increasing mobile traffic and deal with various types of users of wireless mobile systems under overlay convergent cognitive networking environments, it is highly required to improve the performance and the capability of the wireless access networks. With distributed antennas and distributed processors, it is possible for mobile terminals (MTs) to monitor interference and control system effectively to minimize mutual interference among users and cells. Virtual cell changes as the MT moves or the environment changes, so no handoff is needed in connections with base station hotelling. In this paper, the characteristics of wireless distributed systems under the overlay convergent networks will be investigated.

A New Fuzzy Key Generation Method Based on PHY-Layer Fingerprints in Mobile Cognitive Radio Networks

  • Gao, Ning;Jing, Xiaojun;Sun, Songlin;Mu, Junsheng;Lu, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3414-3434
    • /
    • 2016
  • Classical key generation is complicated to update and key distribution generally requires fixed infrastructures. In order to eliminate these restrictions researchers have focused much attention on physical-layer (PHY-layer) based key generation methods. In this paper, we present a PHY-layer fingerprints based fuzzy key generation scheme, which works to prevent primary user emulation (PUE) attacks and spectrum sensing data falsification (SSDF) attacks, with multi-node collaborative defense strategies. We also propose two algorithms, the EA algorithm and the TA algorithm, to defend against eavesdropping attacks and tampering attacks in mobile cognitive radio networks (CRNs). We give security analyses of these algorithms in both the spatial and temporal domains, and prove the upper bound of the entropy loss in theory. We present a simulation result based on a MIMO-OFDM communication system which shows that the channel response characteristics received by legitimates tend to be consistent and phase characteristics are much more robust for key generation in mobile CRNs. In addition, NIST statistical tests show that the generated key in our proposed approach is secure and reliable.

Adaptive Transmission & Receiving Technology Considering Spatial Channel Correlation in Multiple Antenna Systems (공간 채널 상관도에 따른 다중 안테나 시스템의 적응 송.수신 기법)

  • Park Sung-Ho;Kim Kyoo-Hyun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.844-855
    • /
    • 2006
  • The communication system using multiple antennas improves link reliability or system capacity using tx & rx diversity, spatial multiplexing, and beamforming technique with services and characteristics of channel environment. This system is sensitive to spatial channel environment. In case of diversity, the lower correlation among links as a LoS environment, the better performance is acquired. In practical channel environment, However, there is high correlation, and there is high performance difference between ideal case and practical case. On the contrary, in case of beamforming, the higher correlation among links, the better performance is acquired. If we use the spatial adaptive transmission technique with spatial channel characteristics, we can get the system that maintains minimum link reliability and guarantees the overall system performance. In this paper, we propose the adaptive transmission and reception technique which use diversity or beamforming technique with channel characteristics.

Analysis on the Correlation Coefficient for the Diversity Technique Combined with Beamforming Using Measurement Data in Underwater Channel Environments (수중 채널 환경에서 측정 데이터를 이용한 빔형성기가 결합된 다이버시티의 상관 계수 분석)

  • Kim, Min-Sang;Cho, Dae-Young;Park, Jong-Won;Lim, Yong-Kon;Ko, Hak-Lim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1023-1030
    • /
    • 2012
  • The diversity techniques can benefit underwater acoustic communications when the distance between sensors is sufficiently apart, and this leads to the increases in the physical size of the communication system: thus it is very hard to practically use such systems in real-environments. Therefore, in this paper, we have collected data from real underwater cannel environments in order to analyze the usability of diversity combined with beamforming techniques. And we have estimated the fading characteristics from the measurement data, and analyzed the correlation coefficients using the estimated fading characteristics. After analyzing the estimated fading characteristics from the measurements data, we found out that by applying diversity techniques on the output signals from beamformers that perform beamforming from different multipath directions, we can reduce the distance between sensors and at the same time benefit from the diversity gain.

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF