• Title/Summary/Keyword: MIMO Antennas

Search Result 385, Processing Time 0.028 seconds

Efficient Selection Methods of Transmit-Receive Antennas Based on Channel Capacity For MIMO Systems (MIMO 시스템을 위한 채널 용량에 기반을 둔 송수신 안테나의 효율적인 선택 기법)

  • Kim, Hyo-Shil;Kim, Ryun-Woo;Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1092-1099
    • /
    • 2006
  • Future wireless communication systems will employ spatial multiplexing with multiple antennas at both transmitter and receiver to take advantage of larger capacity gains as compared to the systems that use a single antenna. However, in order to reduce higher hardware costs and computational burden, it will require an efficient transmit-receive antenna selection algorithm, which we propose in this paper. Through simulation and comparative analysis of various existing methods and the one we propose in this paper, the algorithm we propose was validated as nearer to the optimal selection technique than existing nearly optimal antenna selection schemes.

BER performance of MIMO 16QAM with transmit and receive polarization diversify technique on mobile communication channel (이동통신 채널에서 송수신 편파 디버시티 기법을 채용한 MIMO 16QAM의 BER 성능분석)

  • Kim, Tae-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.135-141
    • /
    • 2008
  • The utilization techniques for multiple transmit and receive antennas or high capacity modulation schemes are essential to cope with the rapidly increasing demand for realizing more diverse wireless communication services with high rates. However, employing multiple receive antennas at the mobile units seems less practical due at the size and power limitations. Therefore, transmit diversify techniques have been extensively investigated for the downlink transmission to improve the performance In order to overcome the above mentioned problems, we construct a simulation model which combines STC and polarization diversity which scheme is requiring less cost to realize. Multi-level quadrature amplitude modulation (MQAM) is an attractive modulation scheme for wireless communication due to the high spectral efficiency it provides. Thus, the performance for our scheme is presented when 16QAM modulation techniques are applied. and compared with the former schemes.

  • PDF

Isolation Enhancement by the Non-connected Ground Structure for the Mobile Phone MIMO Antenna (비접촉 접지구조에 의한 휴대폰 MIMO 안테나 격리도 향상)

  • Jo, Young-Sang;Son, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1032-1037
    • /
    • 2016
  • In this paper, the method of isolation enhancement for the mobile phone MIMO antenna of LTE class 40(2300~2400MHz) was studied. Design of MIMO antenna was based on the hybrid antenna that operates both a monopole and an IFA(Inverted F Antenna). A structure for the isolation enhancement which controls induced electric field on the ground plane is located between MIMO antenna, and was not connected with the ground but apart 0.3mm. A MIMO antenna that operates on class 3~40(1710~2400MHz) of LTE service bands and a structure for the isolation enhancement at the class 10 band were designed. VSWR measurement of implemented antenna on the FR4 board showed within 3:1 at entire design bands, and isolation between antennas at the class 40 band was less than -30dB. Isolation was enhanced more than 20dB by the studied structure. ECC(Envelope Correlation Coefficient) for MIMO performance was under 0.1, and antenna average gain and efficiency measured in the anechoic chamber were -4.28~-1.40dBi and 37.32~72.36% respectively.

Design of Dual LTE-band MIMO Antenna (이중 LTE 대역의 MIMO 안테나 설계)

  • Choi, Won-Sang;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • In the paper, MIMO antenna for LTE 13 band, LTE 7 band wireless communication service is proposed. The proposed antenna is designed where on the top of FR-4(${\epsilon}_r=4.4$, thickness=-.8mm). In proposed structure, two Planar Inverted F Antennas (PIFAs) using meander and folded structure are symmetrically designed for the miniaturization. The isolation between two antennas was also improved by using two slits on the ground plane. The isolation values of the fabricated antenna exhibits -18 dB, -13dB at LTE 13 and LTE 7 band, respectively. The average gain and efficiency are - 4.1 dBi, 41% on LTE 13 band, -1 dBi, 81% on LTE 7 band, respectively. Thus the proposed antenna can be applied to the LTE system.

Energy Saving MAC for MIMO Wireless Systems (다중 안테나 이동 통신 시스템을 위한 전력 절감 기법)

  • Ryoo, Sun-Heui;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.247-254
    • /
    • 2009
  • Over the last decade multiple-input and multiple-output (MIMO) systems have been actively researched and started to be deployed in wireless communications owing to the significant increase in channel capacity. In this paper, we propose a energy saving MAC protocol in systems by focusing on energy efficiency instead of capacity maximization. We considers the energy consumption together with the tradeoff between reliability (i.e., diversity) and throughput (i.e., multiplexing gain), and dynamically chooses an appropriate number of antennas for transmission. In computing the total energy consumption, we counts circuit energy as well as transmission energy. Naturally the circuit energy consumption is directly proportional to the number of active antennas. Through numerical analysis, we confirm that our power saving MAC scheme for MIMO considerably saves energy consumption compared to conventional capacity maximization schemes that use a fixed number of MIMO channels, for a given outage constraint. Our finding is that the capacity maximizing communication which possibly can be regarded best in terms of energy efficiency gives a different solution from the energy minimizing communication.

A Subcarrier-based Virtual Multiple Antenna Technique for OFDM Cellular Systems (OFDM 셀룰러 시스템에서 부반송파 기반의 가상 다중안테나 기법)

  • Lee, Kyu-In;Ko, Hyun-Soo;Woo, Kyung-Soo;Ko, Yo-Han;Kim, Yeong-Jun;Ahn, Jae-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.981-990
    • /
    • 2006
  • In this paper, we introduce the concept of a subcarrier-based virtual multiple antennas (SV-MIMO) for OFDM cellular systems, where the multiple antenna techniques are performed on a set of subcarriers, not on the actual multiple antennas. The virtual multiple antenna system can support multiple users simultaneously as well as reduce inter-cell interference (ICI) form adjacent cells with a single antenna. Also, this technique is easily extended to multiple antenna environments. The virtual multiple antenna techniques can be divided into a virtual smart antenna technique and a virtual MIMO technique. Especially, this method effectively reduces ICI at cell boundary with frequency reuse factor equal to 1, and can support flexible resource allocation depending on the amount of interference. It is shown by simulation that the proposed method is superior to conventional method under the same condition of data transmission.

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Joint Transceiver Design for SWIPT in MIMO Interference Channel (MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we consider K-user multiple-input multiple-output (MIMO) interference channel and present a transceiver design for simultaneous wireless information and power transfer (SWIPT) systems. In addition, we consider a SWIPT system where an information decoding receiver and an energy harvesting receiver are co-located at the same receiver. In the proposed scheme, signal-to-leakage plus noise ratio (SLNR) is used as a cost function and a transceiver is designed to satisfy the threshold of the harvested energy. More specifically, transmitter precoding vector, receiver filter vector, and power spitting factor are simultaneously designed to maximize SLNR with a constraint on the harvested energy. Through computer simulation, we compare the signal-to-interference plus noise ratio (SINR) performance of the proposed and conventional schemes. When a special condition among the number of transmit antennas, receive antennas, and users is satisfied, the proposed scheme showed better SINR performance than the conventional scheme at low signal-to-noise ratio (SNR) range. Also, when the condition is not satisfied, the proposed scheme showed better performance than the conventional scheme at all SNR range.

A Study of 5G Systems to Improve Receiver Performance in the mmWave Band (밀리미터파 대역의 수신 성능을 개선하기 위한 5G 시스템에 대한 연구)

  • Myeong-saeng Kim;Dong-ok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.362-368
    • /
    • 2024
  • In this paper, we investigated the performance of directional and omnidirectional precoding schemes when transmitting to improve downlink performance in massive MIMO. Omnidirectional precoding was used to broadcast a common signal, such as a synchronization or control signal, to all users. The main purpose of omnidirectional precoding is to design the precoding matrix so that the signal transmitted in the downlink is the same in all directions and emitted with maximum energy. We propose a flexible omnidirectional precoding method for full-dimensional massive MIMO that can set the spatial coverage range to less than 120 degrees. The constraints of omnidirectionality of all antennas, equal transmit power, and maximum transmit rate are used to design the encoding matrix of the proposed method. The performance was evaluated in terms of spatial coverage by considering changing the spatial coverage of the antenna array by changing the distance between neighboring antennas in the antenna array.

Projection of Spatial Correlation-Based Antenna Selection for Cognitive Radio Systems in Correlated Channels (인지무선 시스템의 상관채널에서 공간 상관 행렬 사영을 이용한 안테나 선택기법)

  • Cho, Jae-Bum;Jang, Sung-Jeen;Jung, Won-Sik;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.8-16
    • /
    • 2012
  • Recent work has been shown that cognitive radio systems with multiple antenna at both transmitter and receiver are able to improve performance of secondary users. In such system, the main drawback is the increased complexity and raised cost as the number of antennas increase. It is desirable to apply antenna selection which select a subset of the available antennas so as to solve these problems. In this paper, we consider antenna selection method for cognitive radio systems in correlated channel from the IEEE 802.11n. For a multiple-input multiple-output(MIMO) system with more antennas at transmitter than the receiver, we select the same number of transmit antennas as that of receive antennas. The exhaustive search for optimal antenna becomes impractical. We present criterion for selecting subset in terms of projection of channel correlation vector to increase performance of secondary user with decreasing interference at primary user.