• Title/Summary/Keyword: MEMS sensors

Search Result 311, Processing Time 0.023 seconds

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

Calibration of a Low Grade MEMS IMU Using a High Performance Reference Sensor (고성능 기준 센서를 이용한 저급 MEMS IMU 오차보정)

  • Chang, Keun-Hyung;Chun, Se-Bum;Sung, Sang-Kyung;Lee, Eun-Sung;Jun, Hyang-Sig;Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1822-1829
    • /
    • 2008
  • Calibration of an MEMS inertial measurement unit is very important process for obtaining precise navigation performance. In this paper, one method is proposed to overcome a limitations on cost and efficiency using a relatively higher grade sensor and a rate table. The same dynamic input is applied to both the reference and the target sensors during and after calibration process, then the results are analyzed. The experimental results show that the proposed method is very effective and useful in practice.

X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application (엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용)

  • Kim, Kanghyun;Kim, Jong Hyun;Nam, Hyoryung;Kim, Suhyeon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

Characteristics and Fabrication of Optimal Thermopile on SiNx Membrane for Microspectrometer (마이크로 스펙트로미터 적외선 센서용 저응력 SiNx Membrane상에서의 최적화된 Thermopile 제작 및 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • Twenty four types of thermopile for micro spectrometer infrared sensors were fabricated on low-stress Si3N4 membranes with $l.2{\mu}m-thickness$ using MEMS technology. Thermopile were designed and fabricated for optimum conditions by five parameters of thermocouple numbers $(16\sim48)$, thermocouple line widths $(10{\mu}m-25{\mu}m)$, thermocouple lengths $(100{\mu}m-500{\mu}m)$, membrane areas $(12mm2\sim2.52mm2)$ and junction areas $(150{\mu}m2\sim750{\mu}m2)$, respectively. It was thought that measurement results could be used for thermopile infrared sensors optimum structure for micro spectrometers.

Design of a Camera Calibration System in a Smart Thermo-Sensor Based Network (스마트 열센서 네트워크의 카메라 미세조정을 위한 시스템 구축)

  • Moon Sang-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.924-926
    • /
    • 2006
  • Sensor networks are an emerging area of mobile computing. Networked sensors represent a new design paradigm enabled by advances in micro electro-mechanical systems (MEMS) and low power technology. Created with integrated circuit (IC) technology and combined with computational logic, these 'smart' sensors have the benefit of small size, low cost and power consumption, and, the capability to perform on-board computation. Though this recent technological innovation has shown a significant promise in many application domains, it has also exposed several technical limitations that must be improved. In this paper, we discuss the system deploy issues for infrared thermo sensor camera calibration.

  • PDF

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

UsN based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower (UsN 기반의 송전철탑 건전성 감시진단시스템 기본설계)

  • Lee, Dong-Cheol;Bae, Ul-Lok;Kim, Woo-Jung;Min, Bung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • In this paper, design method for power tower hazard diagnosis/predition system based on UsN was proposed. The proposed method used multi-hybrid sensors to measure rotation, displacement, and inclination state of power tower, and made decision/prediction of hazard of power tower. System design was made with requirement analysis of monitoring for transmission power facility and use of MEMS and optic fiber sensors. For hazard decision, analysis of correlation was made using sensor output. LN based on IEC61850,international standard for digital substation, was also proposed. For transmission facility monitoring, digital substation and power tower were considered as parts of power facility networks.

Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

  • Kim, Jong-Myeong;Mok, Sung-Hoon;Leeghim, Henzeh;Lee, Chang-Yull
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 2017
  • In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.