• Title/Summary/Keyword: MEMS INS

Search Result 28, Processing Time 0.025 seconds

MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment (극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템)

  • Kim, Sung-Chul;Hong, Jin-Seok;Song, Jin-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Development of MEMS-IMU/GPS Integrated Navigation System

  • Kim, Jeong Won;Nam, Chang Woo;Lee, Jae-Cheul;Yoon, Sung Jin;Rhim, Jaewook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.53-62
    • /
    • 2014
  • In the guided missile and unmanned vehicle system, the navigation system is one of the most important components. Recently, low-cost effective smart projectiles and guided bomb are being developed using MEMS based navigation system which has high-G, low-cost and small size. In this paper, locally developed MEMS based GPS/INS integrated navigation system will be introduced in comparison with the state of the art of MEMS based navigation system. And technical design and development method is described to satisfy the required performance of GPS receiver, MEMS inertial sensor assembly, navigation computer and software.

Inertial Sensor Error Rate Reduction Scheme for INS/GPS Integration (INS/GPS 통합에 따른 관성 센서 에러율 감소 방법)

  • Khan, Iftikhar;Baek, Seung-Hyun;Park, Gyung-Leen;Kang, Sung-Min;Lee, Yeon-Seok;Jeong, Tai-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.22-30
    • /
    • 2009
  • GPS and INS integrated systems are expected to become commonly available as a result of low cost Micro-Electro-Mechanical Sensor (MEMS) technology. However, the current performance achieved by low cost sensors is still relatively poor due to the large inertial sensor errors. This is particularly prevalent in the urban environment where there are significant periods of restricted sky view. To reduce the inertial sensor error, GPS and low cost INS are integrated using a Loosely Coupled Kalman Filter architecture which is appropriate in most applications where there is good satellite availability. In this paper, we present the GPS/INS sensor Integration using Loosely Coupled Kalman Filter approach. We also compare the simulation results of Wander Azimuth Strapdown Mechanization Scheme with the reference values generated by the ZH35C trajectory simulator that is describe mathematically either by the geometry of the path, or as the position of the object over time.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

Performance Improvement of Azimuth Estimation in Low Cost MEMS IMU based INS/GPS Integrated Navigation System (저가형 MEMS 관성측정장치 기반 INS/GPS 통합 항법 장치에서 방위각 추정 성능 향상)

  • Chun, Se-Bum;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Kalman filter is generally used in INS/GPS integrated navigation filter. However, the INS with low performance inertia sensor can not find accurate azimuth in initial alignment stage because sensor noise level is too large compare to Earth rotation rate, therefore the performance and stability of Kalman filter can not be guaranteed. In this paper, the extended Kalman filter and particle filter combined filter structure which can be overcome large initial azimuth error is proposed.

Research of MEMS INS Based 3D Positioning Technologies for Workers in Construction Field (MEMS INS 기반 건설현장작업자의 3D 위치결정기법에 관한 연구)

  • Jang, Yonggu;Kim, Hyunsoo;Do, Seungbok;Jeon, Heungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • It is proposed the new method to calculate the absolute altitude and horizontal position of worker in construction field. For this research, we used a pressure sensor, MEMS INS sensor to acquire 3D position of worker. The easiest way to show the result of this research is to use smart phone which equipped various digital sensors in this hardware. So we made two softwares: Data acquisition software in Android smart phone and Data monitoring software in PC. During this research, we encountered several kind of problems which have to be overcame. This paper shows these processes and the results of 3D positioning technologies we suggested newly.

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.