• 제목/요약/키워드: MEMS Fabrication

검색결과 415건 처리시간 0.036초

Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착 (Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device)

  • 윤영수;정형진;신영화
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용 (Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes)

  • 한정삼;곽병만
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

실리콘 RF MEMS SPDT 스위치를 이용한 패키지 형태의 편파 스위칭 안테나 (Package-type polarization switching antenna using silicon RF MEMS SPDT switches)

  • 현익재;정진우;임성준;김종만;백창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1511_1512
    • /
    • 2009
  • This paper presents a polarization switching antenna integrated with silicon RF MEMS SPDT switches in the form of a package. A low-loss quartz substrate made of SoQ (silicon-on-quartz) bonding is used as a dielectric material of the patch antenna, as well as a packaging lid substrate of RF MEMS switches. The packaging/antenna substrate is bonded with the bottom substrate including feeding lines and RF MEMS switches by BCB adhesive bonding, and RF energy is transmitted from signal lines to antenna by slot coupling. Through this approach, fabrication complexity and degradation of RF performances of the antenna due to the parasitic effects, which are all caused from the packaging methods, can be reduced. This structure is expected to be used as a platform for reconfigurable antennas with RF MEMS tunable components. A linear polarization switching antenna operating at 19 GHz is manufactured based on the proposed method, and the fabrication process is carefully described. The s-parameters of the fabricated antenna at each state are measured to evaluate the antenna performance.

  • PDF

평판형 MEMS 고체 추진제 추력기 요소 제작 및 성능 평가 (Fabrication, Performance Evaluation of Components of Planar Type MEMS Solid Propellant Thruster)

  • 박종익;권세진
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.581-586
    • /
    • 2008
  • 기존의 수 mN급의 MEMS 고체 추진제 추력기는 실제 마이크로/나노 위성체의 킥모터,지능탄(Smart bomb)의 측추력기로 응용하기에는 추력 레벨이 너무 낮다는 한계가 있었다. 이 연구에서는 고체 추진제의 연소 면적을 증대시킴으로써 추력 레벨이 향상된 MEMS 고체 추진제 추력기의 제작 가능성을 확인하고 연소 실험을 통해서 구조체의 안정성을 확인하였으며 직접 추력을 측정하여 수백 mN급의 단위 추력기를 개발하였다. 연소 챔버와 노즐, 덮개 층은 감광성 유리 기판을 이용하여 제작하였으며 마이크로 점화기는 파이렉스 기판 위에 300 ㎚ 높이의 니켈과 크롬을 페터닝(patterning)하여 제작하였다. 마이크로 점화기의 성능 해석과 실험을 통한 검증을 수행하여 고체 추진제의 점화를 위한 공급 전력을 계산하였으며 힘 센서를 통하여 추력기의 추력을 측정하였다. 측정된 추력은 K=15와 20인 경우에 300, 600 mN 이었다.

Cavity를 갖는 SDB SOI 구조의 제작 (Fabrication of SDB SOI structure with sealed cavity)

  • 강경두;정수태;주병권;정재훈;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.557-560
    • /
    • 2000
  • Combination of SDB(Si-wafer Direct Bonding) and electrochemical etch-stop in TMAH anisotropic etchant can be used to create a variety of MEMS(Micro Electro Mechanical System). Especially, fabrication of SDB SOI structures using electrochemical etch-stop is accurate method to fabrication of 3D(three-dimensional) microstructures. This paper describes on the fabrication of SDB SOI structures with sealed cavity for MEMS applications and thickness control of active layer on the SDB SOI structure by electrochemical etch-stop. The flatness of fabricated SDB SOI structure is very uniform and can be improved by addition of TMAH to IPA and pyrazine.

  • PDF

미세바늘제작 및 배열을 이용한 반 능동형 가진 약물주입기구 설계 (Semi-active Vibration Drug Delivery Device Design using a Micro-needle Fabrication and Array)

  • 성연욱;박진호;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.48-51
    • /
    • 2011
  • Transdermal drug delivery device is a method of drug delivery through the skin. Skin has a very large area, so it is attractive route to drug delivery. When drug delivery through the skin, microneedle has a advantage that painless, constant drug deliver and penetration efficient; nevertheless the cost is expensive because fabrication process need a particular equipment and not suitable in mass production. This study shows microneedle fabrication process using convergence of general MEMS process and dicing process that can make 3-D sharp microneedle tip and this fabrication process suitable for mass production.

  • PDF

Fabrication and packaging techniques for the application of MEMS strain sensors to wireless crack monitoring in ageing civil infrastructures

  • Ferri, Matteo;Mancarella, Fulvio;Seshia, Ashwin;Ransley, James;Soga, Kenichi;Zalesky, Jan;Roncaglia, Alberto
    • Smart Structures and Systems
    • /
    • 제6권3호
    • /
    • pp.225-238
    • /
    • 2010
  • We report on the development of a new technology for the fabrication of Micro-Electro-Mechanical-System (MEMS) strain sensors to realize a novel type of crackmeter for health monitoring of ageing civil infrastructures. The fabrication of micromachined silicon MEMS sensors based on a Silicon On Insulator (SOI) technology, designed according to a Double Ended Tuning Fork (DETF) geometry is presented, using a novel process which includes a gap narrowing procedure suitable to fabricate sensors with low motional resistance. In order to employ these sensors for crack monitoring, techniques suited for bonding the MEMS sensors on a steel surface ensuring good strain transfer from steel to silicon and a packaging technique for the bonded sensors are proposed, conceived for realizing a low-power crackmeter for ageing infrastructure monitoring. Moreover, the design of a possible crackmeter geometry suited for detection of crack contraction and expansion with a resolution of $10{\mu}m$ and very low power consumption requirements (potentially suitable for wireless operation) is presented. In these sensors, the small crackmeter range for the first field use is related to long-term observation on existing cracks in underground tunnel test sections.

실리콘 선택적 기상 성장을 이용한 마이크로 센서에 응용되는 구조물 제조법 (Application of selective Epitaxial Growth of Silicon on MEMS Structure)

  • 박정호;김종관;김상영;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1025-1027
    • /
    • 1995
  • SEG(Selective Epitaxial Growth) and ELO(Epitaxial Lateral Growth) of Silicon offer new opportunities in the fabrication of MEMS(Micro Electro-Mechanical Systems) structures. SEG of silicon enables the stacking of junctions in addition to those resulting from the standard bipolar process and this properly was utilized for the fabrication of an improved-performance color sensor. When the crystalline growth takes place through the seed windows and proceeds over the dielectric, after reaching the surface, it form an ELO silicon layer and this ELO-Si can be modified into various structures for MEMS application such as cantilevers, beams, diaphragms.

  • PDF

Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계 및 제작 (Electrostatic 2-axis MEMS Stage for an Application to Probe-based Storage Devices)

  • 백경록;전종업
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.173-181
    • /
    • 2005
  • We report on the design and fabrication of an electrostatic 2-axis MEMS stage possessing a platform with a size of $5{times}5mm^2$. The stage, as a key component, would be used in developing probe-based storage devices in the future. It was fabricated by forming numerous $5{\times}5{\mu}m^2$ etching holes in the central platform, as a result, reducing the total number of masks to 1, thereby simplifying the whole fabrication process. Experimental results show that the driving range of the stage was $32{\mu}m$ at the supplied voltage of 20V and the natural frequency was approximately 300Hz. The mechanical coupling between x- and y-motion was also measured and verified to be $25\%$.

초고온 MEMS용 SiCN 미세구조물 제조 (Fabrication of SiCN Microstructures for Super-Temperature MEMS applications)

  • 우형순;김규현;노상수;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.125-128
    • /
    • 2004
  • In this paper, a novel processing technique for fabrication of high-temperature MEMS based on polymer-derived SiCN microstructures is described. PDMS molds are fabricated on SU-8 photoresist using standard UV-photolithographic processes. Liquid precursors are injected into the PDMS mold. And then, the resulting solid polymer structures are crosslinked under isostatic pressure, and pyrolyzed to form a ceramic capable of withstanding over $1500^{\circ}C$. These fabricated SiCN structures would be applied for high-temperature applications, such as heat exchanger and combustion chamber.

  • PDF