• Title, Summary, Keyword: MEMS

Search Result 1,873, Processing Time 0.037 seconds

The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement (잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1659-1666
    • /
    • 2018
  • When the input sound is mixed voice and sound, it can be seen that the voice recognition rate is lowered due to the noise, and the speech recognition rate is improved by improving the MEMS device which is the H / W device in order to overcome the S/W processing limit. The MEMS microphone device is a device for inputting voice and is implemented in various shapes and used. Conventional MEMS microphones generally exhibit excellent performance, but in a special environment such as noise, there is a problem that the processing performance is deteriorated due to a mixture of voice and sound. To overcome these problems, we developed a newly designed MEMS device that can detect the voice characteristics of the initial input device.

Parallelism-aware Request Scheduling for MEMS-based Storages (MEMS 기반 저장장치를 위한 병렬성 기반 스케줄링 기법)

  • Lee, So-Yoon;Bahn, Hyo-Kyung;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2007
  • MEMS-based storage is being developed as a new storage media. Due to its attractive features such as high-bandwidth, low-power consumption, high-density, and low cost, MEMS storage is anticipated to be used for a wide range of applications from storage for small handhold devices to high capacity mass storage servers. However, MEMS storage has vastly different physical characteristics compared to a traditional disk. First, MEMS storage has thousands of heads that can be activated simultaneously. Second, the media of MEMS storage is a square structure which is different from the platter structure of disks. This paper presents a new request scheduling algorithm for MEMS storage that makes use of the aforementioned characteristics. This new algorithm considers the parallelism of MEMS storage as well as the seek time of requests on the two dimensional square structure. We then extend this algorithm to consider the aging factor so that starvation resistance is improved. Simulation studies show that the proposed algorithms improve the performance of MEMS storage by up to 39.2% in terms of the average response time and 62.4% in terms of starvation resistance compared to the widely acknowledged SPTF (Shortest Positioning Time First) algorithm.

MEMS space Telescope for the observation of Extreme Lightening (MTEL)

  • Park, Jae-Hyoung;Garipov, Garik;Jeon, Jin-A;Jin, Joo-Young;Jung, Ae-Ra;Kim, Ji-Eun;Kim, Min-Soo;Kim, Yong-Kweon;Klimov, Pavel;Khrenov, Boris;Lee, Chang-Hwan;Lee, Jik;Na, Go-Woon;Nam, Ji-Woo;Nam, Shin-Woo;Park, Il-Heung;Park, Yong-Sun;Suh, Jung-Eun;Yoo, Byong-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.113.1-113.1
    • /
    • 2009
  • PDF

MEMS space Telescope for the observation of Extreme Lightening (MTEL)

  • Park, Jae-Hyoung;Garipov, Garik;Jeon, Jin-A;Jin, Joo-Young;Jung, Ae-Ra;Kim, Ji-Eun;Kim, Min-Soo;Kim, Yong-Kweon;Klimov, Pavel;Khrenov, Boris;Lee, Chang-Hwan;Lee, Jik;Na, Go-Woon;Nam, Ji-Woo;Nam, Shin-Woon;Park, Il-Heung;Park, Yong-Sun;Suh, Jung-Eun;Yoo, Byong-Wook
    • Bulletin of the Korean Space Science Society
    • /
    • /
    • pp.54.3-55
    • /
    • 2009
  • PDF

Studies on MEMS Inertial Switch Applicable to the Ignition SAU(Safe-Arm-Unit) of Propulsion System (추진기관 점화안전장치에 적용 가능한 MEMS 관성 스위치 연구)

  • Jang, Seung-Gyo;Jung, Hyung-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.126-129
    • /
    • 2010
  • MEMS(micro electro-mechanical systems) inertial switch which is applicable to the ignition Safe-Arm- Unit of propulsion system is devised. The MEMS inertial switch is designed according to the general design procedure for conventional mechanical elements. Unlikely conventional MEMS accelerometer, threshold inertial switching mechanism is adopted which makes a MEMS element an abrupt switching in a certain acceleration level. By comparing the design data and test results of the specimen a small discrepancy in switching acceleration level is found which is presumably due to the nonlinear characteristics of the beam spring and the flexure hinge which are the main parts of the MEMS inertial switch.

  • PDF

A Consideration on the Process Technology and Application of MEMS to prepare for upcoming MEMS-based technological paradigm (MEMS 기반의 새로운 기술적 패러다임에 대비한 공정 기술 분석 및 적용에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Recently, in the electric, electronic, robotic, and medical industries, a great attention has been paid to the development of MEMS-based smart devices with a compact size and highly intelligency. The MEMS technology is very effective in designing into a compact size and lightweight by combining into one the complex electrical, mechanical, chemical, and biological features which are required by smart devices, and at the same time, in bulk batch manufacturing. Therefore, this study, to prepare for upcoming new MEMS-based technological paradigm, analyzes MEMS processes and then considers its Applications.

Reliability Assessment of MEMS Gyroscope Sensor (MEMS 자이로스코프 센서의 신뢰성 문제)

  • Choi, Min-Seog;Choa, Sung-Hoon;Kim, Jong-Seok;Jeong, Hee-Moon;Song, In-Seob;Cho, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1297-1305
    • /
    • 2004
  • Reliability of MEMS devices is receiving more attention as they are heading towards commercial production. In particular are the reliability and long-term stability of wafer level vacuum packaged MEMS gyroscope sensors subjected to cyclic mechanical stresses at high frequencies. In this study, we carried out several reliability tests such as environmental storage, fatigue, shock, and vibration, and we investigated the failure mechanisms of the anodically bonded vacuum gyroscope sensors. It was found that successful vacuum packaging could be achieved through reducing outgassing inside the cavity by deposition of titanium as well as by pre-taking process. The current gyroscope structure is found to be safe from fatigue failure for 1000 hours of operation test. The gyroscope sensor survives the drop and vibration tests without any damage, indicating robustness of the sensor. The reliability test results presented in this study demonstrate that MEMS gyroscope sensor is very close to commercialization.

Prediction of the Performance Distributions and Manufacturing Yields of a MEMS Accelerometer (MEMS 가속도계의 성능분포 및 제조수율 예측)

  • Kim, Yong-Il;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.791-798
    • /
    • 2011
  • All mechanical-system parameters have uncertainty, and this uncertainty directly affects system performances and results in a decrease in the manufacturing outputs. In particular, since the size of a MEMS system is extremely small, the manufacturing tolerances of a MEMS system are relatively large when compared to the tolerances of a macro-scale system. High manufacturing tolerances result from an increase in the uncertainty of the system parameters, thereby affecting the performances and manufacturing yields. In this paper, the performance uncertainty of a MEMS accelerometer due to system parameter uncertainty is analyzed by using several uncertainty analysis methods. Finally, the performance distributions and manufacturing yields of the MEMS accelerometer are predicted.

Data Translation from 2D MEMS Design Data by the Removal of Superposed Entity to the 3D CAD Model (MEMS 설계용 2차원 데이터의 중복요소 제거를 통한 3차원 CAD 모델로의 변환)

  • Kim, Yong-Sik;Kim, Jun-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.447-454
    • /
    • 2006
  • Although there are many needs to use 3D models in MEMS field, it is not easy to generate 3D models based on MEMS CAD. This is because MEMS CAD is based on 2D and their popular format-GDSII file format- has its own limits and problems. The differences between GDSII file format and 3D CAD system, such as (1) superposed modeling, (2) duplicated entity, (3) restricted of entity type, give rise to several problems in data exchange. These limits and problems in GDSII file format have prevented 3D CAD system from generating 3D models from the MEMS CAD. To remove these limits and solve problems, it is important to extract the silhouette of data in the MEMS CAD. The proposed method has two main processes to extract silhouette; one is to extract the pseudo-silhouette from the original 2D MEMS data and the other is to remove useless objects to complete the silhouette. The paper reports on the experience gained in data exchange between 2D MEMS data and 3D models by the proposed method and a case study is presented, which employs the proposed method using MEMS CAD IntelliMask and Solidworks.