• Title/Summary/Keyword: MEK1

Search Result 224, Processing Time 0.022 seconds

Up-regulation of Aldo-keto Reductase 1C3 Expression in Sulforaphane-treated MCF-7 Breast Cancer Cells

  • Lee, Sang-Han
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1079-1085
    • /
    • 2008
  • The chemopreventive activity of sulforaphane (SFN) occurs through its inhibition of carcinogen-activating enzymes and its induction of detoxification enzymes. However, the exact mechanisms by which SFN exerts its anti-carcinogenic effects are not fully understood. Therefore, the mechanisms underlying the cytoprotective effects of SFN were examined in MCF-7 breast cancer cells. Exposure of cells to SFN (10 ${\mu}M$) induced a transcriptional change in the AKR1C3 gene, which is one of aldo-keto reductases (AKRs) family that is associated with detoxification and antioxidant response. Further analysis revealed that SFN elicited a dose- and time-dependent increase in the expression of both the NRF2 and AKR1C3 proteins. Moreover, this up-regulation of AKR1C3 was inhibited by pretreatment with antioxidant, N-acetyl-L-cysteine (NAC), which suggests that the up-regulation of AKR1C3 expression induced by SFN involves reactive oxygen species (ROS) signaling. Furthermore, pretreatment of cells with LY294002, a pharmacologic inhibitor of phosphatidylinositol 3-kinase (PI3K), suppressed the SFN-augmented Nrf2 activation and AKR1C3 expression; however, inhibition of PKC or MEK1/2 signaling with $G\ddot{o}6976$ or PD98059, respectively, did not alter SFN-induced AKR1C3 expression. Collectively, these data suggest that SFN can modulate the expression of the AKR1C3 in MCF-7 cells by activation of PI3K via the generation of ROS.

Copolymers of p-acryloyloxyacetophenone (AcAP) with MMA: Synthesis, Characterization and their Antifouling (AF) Efficiency

  • Elango, S.;Sidharthan, M.;Viswanadh, G.S.;Cho, Ji-Young;Park, N.S.;Shin, H.W.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.379-379
    • /
    • 2006
  • AcAP was prepared by reacting p-hydroxyacetophenone (HAP) with acryloyl chloride (Ac) in presence of triethylamine (TEA) in MEK at $0^{\circ}C$. The reaction was monitored by TLC and the prepared monomer was characterized by UV, IR, $^{1}H-NMR\;and\;GC-MS$. The homo- [poly (AcAP)] and copolymers [poly (AcAP-co-MMA)] were prepared by solution polymerization at $70^{\circ}C$, in which BPO as initiator. The molecular weight of the polymers was determined by GPC. In order to find out the AF activity of prepared polymers, representatives of marine microfoulers, shipfouling bacteria (B. macroides & P. aeruginosa) and microalgae (A. coffeaeformis & N. incerta) were screened. The results of antibacterial activity and diatom attachment assays revealed potential AF efficiency of these polymers.

  • PDF

Copolymers of p-acryloyloxyacetophenone (AcAP) with MMA: Synthesis, Characterization and their Antifouling (AF) Efficiency

  • Elango, S.;Sidharthan, M.;Viswanadh, G.S.;Cho, Ji-Young;Park, N.S.;Shin, H.W.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.381-381
    • /
    • 2006
  • AcDP and AcAP were prepared by the reaction of acryloyl chloride (Ac) with 2,4,4' -trichloro-2' -hydroxydiphenyl ether (DP) and p-hydroxyacetophenone respectively in presence of triethylamine (TEA) in MEK at $0^{\circ}C$. The reaction was monitored by TLC and the prepared monomer was characterized by UV, IR, $1^H-NMR$ and GC-MS. Further, copolymers poly (AcDP-MMA-AcAP) were prepared in different feed ratio of monomers by free radical polymerization at $70^{\circ}C$, in which BPO as initiator and their molecular weight was determined by GPC. The AF activity of prepared polymers was investigated against representatives of marine microfoulers, shipfouling bacteria (B. macroides & P. aeruginosa) and microalgae (A.coffeaeformis & N. incerta). The antibacterial activity and diatom attachment assays showed significant AF potential of these polymers.

  • PDF

The Study of Separation of VOC using PDMS Pervaporation membrane (PDMS투과증발막을 이용한 VOC의 분리에 관한 연구)

  • 송영석;김희진;민병렬
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.127-128
    • /
    • 1997
  • 1. 서론 : 투과증발막에 의한 수용액으로부터 유기물을 선태적으로 투과하는 공정은 용제회수, 오염감소, 유기물농축 및 처리 등의 목적으로 사용되어진다. 1989년에 이르러 상업적으로 응용이 되기 시작하였으며, 여러가지 막재질이 개발되고 있으나 현재 적용되고 있는 막은 Silicone rubber가 주를 이루고 있다. 이중 PDMS 막은 유기물질의 선택적 분리에 있어서 가장 우수한 막재질로 보고되고 있다. 투과증발을 이용하여 휘발성 유기물질을 분리함에 있어서 그 분리능은 막재질의 선정뿐만 아니라 막구조의 결정이 중요한 변수로 지적되며, 이 구조에 따라 투과성능의 다양한 변화를 가져올 수 있다. 본 연구는 PDMS의 막구조를 달리하면서 제막하여, VOC중 MEK(Methyl Ethyl Keton)과 toluene을 실험물질로 정하여 PDMS막의 투과성능을 관찰해보았다.

  • PDF

Synthesis of Methylmethacrylate/acrylonitrile Organosol Copolymer

  • Ahn, Young-Ok
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 1970
  • Chacterization of MMA/AN organosol copolymer and subsequent comparison with the prior art latex copolymers has been accomplished. By means of NMR analyses, we found both types of copolymers to be random. The GPC analyses show that the organosol copolymers have a singnificantly broader MW spread than latex copolymers. This is due to the low MW stabilizer which is present as a physical mixture. As a result, the MW distribution is bimodal. Fractionation of a typical organosol copolymer yields a low MW(33,000-100,000), MMA rich fraction and a high MW (250,000-330,000), AN rich fraction. Solubility-wise, the organosol copolymers are readily soluble in the lacquer solvent MEK to give a colorless film. The prio rart copolymers, hewever, were imcompletely soluble and gave yellow, hazy film.

  • PDF

Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.57-61
    • /
    • 2016
  • Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane $A_2$- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation

  • Hyuk-Jun, Yoon;Dae Hong, Kang;Fanxue, Jin;Joon Seok, Bang;Uy Dong, Sohn;Hyun Dong, Je
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.193-199
    • /
    • 2023
  • In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

The Effect of Galangin on the Regulation of Vascular Contractility via the Holoenzyme Reactivation Suppressing ROCK/CPI-17 rather than PKC/CPI-17

  • Yoon, Hyuk-Jun;Jung, Won Pill;Min, Young Sil;Jin, Fanxue;Bang, Joon Seok;Sohn, Uy Dong;Je, Hyun Dong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway. Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoride-dependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber (활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구)

  • Byeon, Sang-Hoon;Park, Cheon-Jae;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF

The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Kim, Hyeong-Dong;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.233-237
    • /
    • 2015
  • Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane $A_2$- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function.