DOI QR코드

DOI QR Code

The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation

  • Hyuk-Jun, Yoon (Department of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Dae Hong, Kang (Department of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Fanxue, Jin (Department of Pharmacology, Kyungpook National University School of Medicine) ;
  • Joon Seok, Bang (College of Pharmacy, Sookmyung Women's University) ;
  • Uy Dong, Sohn (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Hyun Dong, Je (Department of Pharmacology, College of Pharmacy, Daegu Catholic University)
  • Received : 2022.06.29
  • Accepted : 2022.08.18
  • Published : 2023.03.01

Abstract

In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

Keywords

References

  1. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
  2. Ansari, H., Teng, B., Nadeem, A., Roush, K., Martin, K., Schnermann, J. and Mustafa, S. (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1032-H1039. https://doi.org/10.1152/ajpheart.00374.2009
  3. Burton, M. D., Rytych, J. L., Amin, R. and Johnson, R. W. (2016) Dietary luteolin reduces proinflammatory microglia in the brain of senescent mice. Rejuvenation Res. 19, 286-292. https://doi.org/10.1089/rej.2015.1708
  4. Eto, M., Katsuki, S., Ohashi, M., Miyagawa, Y., Tanaka, Y., Takeya, K. and Kitazawa, T. (2022) Possible roles of N- and C-terminal unstructured tails of CPI-17 in regulating Ca2+ sensitization force of smooth muscle. J. Smooth Muscle Res. 58, 22-33. https://doi.org/10.1540/jsmr.58.22
  5. Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73. https://doi.org/10.1007/978-1-4419-9194-2_14
  6. Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo, L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
  7. Hedges, J., Oxhorn, B., Carty, M., Adam, L., Yamboliev, I. and Gerthoffer, W. T. (2000) Phosphorylation of caldesmon by Erk MAP kinases in smooth muscle. Am. J. Physiol. Cell Physiol. 278, C718-C726. https://doi.org/10.1152/ajpcell.2000.278.4.c718
  8. Iida, K., Naiki, T., Naiki-Ito, A., Suzuki, S., Kato, H., Nozaki, S., Nagai, T., Etani, T., Nagayasu, Y., Ando, R., Kawai, N, Yasui, T. and Takahashi, S. (2020) Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 111, 1165-1179. https://doi.org/10.1111/cas.14334
  9. Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
  10. Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
  11. Johnson, R. P., El-Yazbi, A. F., Takeya, K., Walsh, E. J., Walsh, M. P. and Cole, W. C. (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537-2553. https://doi.org/10.1113/jphysiol.2008.168252
  12. Kim, J. I., Urban, M., Young, G. D. and Eto, M. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 303, C58-C68. https://doi.org/10.1152/ajpcell.00118.2012
  13. Kitazawa, T., Eto, M., Woodsome, T. P. and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900. https://doi.org/10.1074/jbc.275.14.9897
  14. Kuriyama, T., Tokinaga, Y., Tange, K., Kimoto, Y. and Ogawa, K. (2012) Propofol attenuates angiotensin II-induced vasoconstriction by inhibiting Ca2+-dependent and PKC-mediated Ca2+ sensitization mechanisms. J. Anesth. 26, 682-688. https://doi.org/10.1007/s00540-012-1415-5
  15. Lin, Y., Shi, R., Wang, X. and Shen, H. (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr. Cancer Drug Targets 8, 634-646. https://doi.org/10.2174/156800908786241050
  16. Liu, Z. and Khalil, R. A. (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 153, 91-122. https://doi.org/10.1016/j.bcp.2018.02.012
  17. Perez-Aso, M., Segura, V., Monto, F., Barettino, D., Noguera, M. A., Milligan, G. and D'Ocon, P. (2013) The three alpha1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim. Biophys. Acta 1833, 2322-2333. https://doi.org/10.1016/j.bbamcr.2013.06.013
  18. Qi, F., Ogawa, K., Tokinaga, Y., Uematsu, N., Minonishi, T. and Hatano, Y. (2009) Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth. Analg. 109, 412-417. https://doi.org/10.1213/ane.0b013e3181ac6d96
  19. Qiao, Y. N., He, W. Q., Chen, C. P., Zhang, C. H., Zhao, W., Wang, P., Zhang, L., Wu, Y. Z., Yang, X., Peng, Y. J., Gao, J. M., Kamm, K. E., Stull, J. T. and Zhu, M. S. (2014) Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J. Biol. Chem. 289, 22512-22523. https://doi.org/10.1074/jbc.M113.525444
  20. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
  21. Sasahara, T., Okamoto, H., Ohkura, N., Kobe, A. and Yayama, K. (2015) Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur. J. Pharmacol. 762, 89-95. https://doi.org/10.1016/j.ejphar.2015.05.042
  22. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  23. Sun, J., Tao, T., Zhao, W., Wei, L., She, F., Wang, P., Li, Y., Zheng, Y., Chen, X., Wang, W., Qiao, Y., Zhang, X. N. and Zhu, M. S. (2019) CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice. J. Genet. Genomics 46, 109-118. https://doi.org/10.1016/j.jgg.2019.02.005
  24. Taheri, Y., Sharifi-Rad, J., Antika, G., Yilmaz, Y. B., Tumer, T. B., Abuhamdah, S., Chandra, S., Saklani, S., Kilic, C. S., Sestito, S., Dastan, S. D., Kumar, M., Alshehri, M. M., Rapposelli, S., Cruz-Martins, N. and Cho, W. C. (2021) Paving luteolin therapeutic potentialities and agro-food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits. Oxid. Med. Cell. Longev. 2021, 1987588.
  25. Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
  26. Wei, B., Lin, Q., Ji, Y. G., Zhao, Y. C., Ding, L. N., Zhou, W. J., Zhang, L. H., Gao, C. Y. and Zhao, W. (2018) Luteolin ameliorates rat myocardial ischemia-reperfusion injury through activation of peroxiredoxin II. Br. J. Pharmacol. 175, 3315-3332. https://doi.org/10.1111/bph.14367
  27. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
  28. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
  29. Yang, Q., Fujii, W., Kaji, N., Kakuta, S., Kada, K., Kuwahara, M., Tsubone, H., Ozaki, H. and Hori, M. (2018) The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 32, 2095-2109. https://doi.org/10.1096/fj.201700794r