References
- Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
- Ansari, H., Teng, B., Nadeem, A., Roush, K., Martin, K., Schnermann, J. and Mustafa, S. (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1032-H1039. https://doi.org/10.1152/ajpheart.00374.2009
- Burton, M. D., Rytych, J. L., Amin, R. and Johnson, R. W. (2016) Dietary luteolin reduces proinflammatory microglia in the brain of senescent mice. Rejuvenation Res. 19, 286-292. https://doi.org/10.1089/rej.2015.1708
- Eto, M., Katsuki, S., Ohashi, M., Miyagawa, Y., Tanaka, Y., Takeya, K. and Kitazawa, T. (2022) Possible roles of N- and C-terminal unstructured tails of CPI-17 in regulating Ca2+ sensitization force of smooth muscle. J. Smooth Muscle Res. 58, 22-33. https://doi.org/10.1540/jsmr.58.22
- Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73. https://doi.org/10.1007/978-1-4419-9194-2_14
- Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo, L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
- Hedges, J., Oxhorn, B., Carty, M., Adam, L., Yamboliev, I. and Gerthoffer, W. T. (2000) Phosphorylation of caldesmon by Erk MAP kinases in smooth muscle. Am. J. Physiol. Cell Physiol. 278, C718-C726. https://doi.org/10.1152/ajpcell.2000.278.4.c718
- Iida, K., Naiki, T., Naiki-Ito, A., Suzuki, S., Kato, H., Nozaki, S., Nagai, T., Etani, T., Nagayasu, Y., Ando, R., Kawai, N, Yasui, T. and Takahashi, S. (2020) Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 111, 1165-1179. https://doi.org/10.1111/cas.14334
- Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
- Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
- Johnson, R. P., El-Yazbi, A. F., Takeya, K., Walsh, E. J., Walsh, M. P. and Cole, W. C. (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537-2553. https://doi.org/10.1113/jphysiol.2008.168252
- Kim, J. I., Urban, M., Young, G. D. and Eto, M. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 303, C58-C68. https://doi.org/10.1152/ajpcell.00118.2012
- Kitazawa, T., Eto, M., Woodsome, T. P. and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900. https://doi.org/10.1074/jbc.275.14.9897
- Kuriyama, T., Tokinaga, Y., Tange, K., Kimoto, Y. and Ogawa, K. (2012) Propofol attenuates angiotensin II-induced vasoconstriction by inhibiting Ca2+-dependent and PKC-mediated Ca2+ sensitization mechanisms. J. Anesth. 26, 682-688. https://doi.org/10.1007/s00540-012-1415-5
- Lin, Y., Shi, R., Wang, X. and Shen, H. (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr. Cancer Drug Targets 8, 634-646. https://doi.org/10.2174/156800908786241050
- Liu, Z. and Khalil, R. A. (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 153, 91-122. https://doi.org/10.1016/j.bcp.2018.02.012
- Perez-Aso, M., Segura, V., Monto, F., Barettino, D., Noguera, M. A., Milligan, G. and D'Ocon, P. (2013) The three alpha1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim. Biophys. Acta 1833, 2322-2333. https://doi.org/10.1016/j.bbamcr.2013.06.013
- Qi, F., Ogawa, K., Tokinaga, Y., Uematsu, N., Minonishi, T. and Hatano, Y. (2009) Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth. Analg. 109, 412-417. https://doi.org/10.1213/ane.0b013e3181ac6d96
- Qiao, Y. N., He, W. Q., Chen, C. P., Zhang, C. H., Zhao, W., Wang, P., Zhang, L., Wu, Y. Z., Yang, X., Peng, Y. J., Gao, J. M., Kamm, K. E., Stull, J. T. and Zhu, M. S. (2014) Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J. Biol. Chem. 289, 22512-22523. https://doi.org/10.1074/jbc.M113.525444
- Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
- Sasahara, T., Okamoto, H., Ohkura, N., Kobe, A. and Yayama, K. (2015) Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur. J. Pharmacol. 762, 89-95. https://doi.org/10.1016/j.ejphar.2015.05.042
- Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
- Sun, J., Tao, T., Zhao, W., Wei, L., She, F., Wang, P., Li, Y., Zheng, Y., Chen, X., Wang, W., Qiao, Y., Zhang, X. N. and Zhu, M. S. (2019) CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice. J. Genet. Genomics 46, 109-118. https://doi.org/10.1016/j.jgg.2019.02.005
- Taheri, Y., Sharifi-Rad, J., Antika, G., Yilmaz, Y. B., Tumer, T. B., Abuhamdah, S., Chandra, S., Saklani, S., Kilic, C. S., Sestito, S., Dastan, S. D., Kumar, M., Alshehri, M. M., Rapposelli, S., Cruz-Martins, N. and Cho, W. C. (2021) Paving luteolin therapeutic potentialities and agro-food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits. Oxid. Med. Cell. Longev. 2021, 1987588.
- Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
- Wei, B., Lin, Q., Ji, Y. G., Zhao, Y. C., Ding, L. N., Zhou, W. J., Zhang, L. H., Gao, C. Y. and Zhao, W. (2018) Luteolin ameliorates rat myocardial ischemia-reperfusion injury through activation of peroxiredoxin II. Br. J. Pharmacol. 175, 3315-3332. https://doi.org/10.1111/bph.14367
- Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
- Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
- Yang, Q., Fujii, W., Kaji, N., Kakuta, S., Kada, K., Kuwahara, M., Tsubone, H., Ozaki, H. and Hori, M. (2018) The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 32, 2095-2109. https://doi.org/10.1096/fj.201700794r