References
- Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wailing MA, Jeffery EH. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agr. Food Chem. 47: 1541-1548 (1999) https://doi.org/10.1021/jf980985s
- Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J. 20: 506-508 (2006) https://doi.org/10.1096/fj.05-4785fje
- Chuang LT, Moqattash ST, Gretz HF, Nezhat F, Rahaman J, Chiao JW. Sulforaphane induces growth arrest and apoptosis in human ovarian cancer cells. Acta Obstet. Gyn. Sca. 16: 1-6 (2007)
- Matsui TA, Murata H, Sakabe T, Sowa Y, Horie N, Nakanishi R, Sakai T, Kubo T. Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol. Rep. 18: 1263-1268 (2007)
- Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, McIntee EJ, Hecht SS, Chung FL. Phenethylisothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res. 65: 8548-8557 (2005) https://doi.org/10.1158/0008-5472.CAN-05-0237
- Lee SB, Lee JY, Song DG, Pan CH, Nho CW, Kim MC, Lee EH, Jung SH, Kim HS, Kim YS, Um BH. Cancer chemopreventive effects Korean seaweed extracts. Food Sci. Biotechnol. 17: 613-622 (2008)
- Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. P. Natl. Acad. Sci. USA 89: 2399-2403 (1992)
- Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW. Sensitivity to carcinogenesis is increased and chemopreventive efficacy of enzyme inducers is lost in Nrf2 transcription factor-deficient mice. P. Natl. Acad. Sci. USA 98: 3410-3415 (2001)
- Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidem. Biomar. 5: 733-748 (1996)
- Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 92: 61-68 (2000) https://doi.org/10.1093/jnci/92.1.61
- Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 134: 1134-1138 (2004) https://doi.org/10.1093/jn/134.5.1134
- Lee SH, Shiao YH, Kasprzak KS. Nonradioactive mRNA differential display in polyacrylamide mini-gels. Res. Co. Mol. Path. 106: 108-114 (1999)
- Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap 1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Gene Dev. 13: 76-86 (1999) https://doi.org/10.1101/gad.13.1.76
- Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. 47: 263-292 (2007) https://doi.org/10.1146/annurev.pharmtox.47.120505.105337
- Ellis EM. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Therapeut. 115: 13-24 (2007) https://doi.org/10.1016/j.pharmthera.2007.03.015
- Penning TM. Aldo-keto reductases and formation of polycyclic aromatic hydrocarbon O-quinones. Methods Enzymol. 378: 31-67 (2004) https://doi.org/10.1016/S0076-6879(04)78003-9
- Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reductase superfamily homepage. Chem. Biol. Interact. 143-144: 499-525 (2003)
- Burczynski ME, Lin HK, Penning TM. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: Implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res. 59: 607-614 (1999)
- Wang XJ, Hayes JD, Wolf CR. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res. 66: 10983-10994 (2006) https://doi.org/10.1158/0008-5472.CAN-06-2298
- Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. 47: 89-116 (2007) https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
- Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J. Biol. Chem. 280: 19911-19924 (2005) https://doi.org/10.1074/jbc.M412443200
- Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79-82 (1999) https://doi.org/10.1038/43459
- Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649-661 (2005) https://doi.org/10.1016/j.cell.2004.12.041
- Chen KC, Zhou Y, Zhang W, Lou MF. Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol. Vis. 13: 374-387 (2007)
- Biswas S, Gupta MK, Chattopadhyay D, Mukhopadhyay CK. Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase. Am. J. Physiol. -Heart C. 292: H758-H766 (2007) https://doi.org/10.1152/ajpheart.00718.2006
- Harrison EM, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ. Insulin induces heme oxygenase-1 through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in renal cells. FEBS J. 273: 2345-2356 (2006) https://doi.org/10.1111/j.1742-4658.2006.05224.x
- Jakubikova J, Sedlak J, Mithen R, Bao Y. Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest, and cell death in Caco-2 cells. Biochem. Pharmacol. 69: 1543-1552 (2005) https://doi.org/10.1016/j.bcp.2005.03.015
- Yu R, Chen C, Mo YY, Hebbar V, Owuor ED, Tan TH, Kong AN. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275: 39907-39913 (2000) https://doi.org/10.1074/jbc.M004037200
- Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780 (2003) https://doi.org/10.1038/nrc1189
- Gharavi N, Haggarty S, El-Kadi AO. Chemoprotective and carcinogenic effects of tert-butylhydroquinone and its metabolites. Curr. Drug Metab. 8: 1-7 (2007)
- Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett. 546: 181-184 (2003) https://doi.org/10.1016/S0014-5793(03)00517-9