• Title/Summary/Keyword: MEH-PPV

Search Result 71, Processing Time 0.026 seconds

The Electrical and Optical Properties of Polymer Light Emitting Diode with ITO/PEDOT:PSS/MEH-PPV/Al Structure at Various Concentration of MEH-PPV (ITO/PEDOT:PSS/MEH-PPV/Al 구조에서 MEH-PPV 농도에 따른 유기발광다이오드의 전기$\cdot$광학적 특성)

  • Gong Su Cheol;Back In Jea;Yoo Jae Hyouk;Lim Hun Seung;Chang Ho Jung;Chang Gee Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.155-159
    • /
    • 2005
  • In this report, Polymer light emitting diodes (PLEDs) with an ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared by spin coating method on the glass substrate patterned ITO (indium tin oxide), using PEDOT:PSS(poly(3,4=ethylenedioxythiophene):poly(styrene sulfolnate)) as the hole transfer material and MEH-PPV(poly(2-methoxy-5-(2-ethyhexoxy)-1,4-phenylenvinylene)) having a different concentration (0.1, 0.3, 0.5, 0.7, 0.9, 1.5 wt$\%$) as the emitting material. The electrical and optical properties of the prepared PLED samples were investigated. The good electrical and optical properties were observed for the PLED samples with a MEH-PPV concentration ranging from 0.5 to $0.9 wt\%$. However, the current and luminance values for PLED sample with $1.5 wt\%$ of MEH-PPV decreased greatly. The maximum luminance and light efficiency for the PLEDs with concentration of $0.5 wt\%$ MEH-PPV were $409 cd/m^2$ and 4.90 Im/W at 9 V, respectively. The emission spectrums were found to be $560{\~}585 nm$ in wavelength showing orange color.

  • PDF

The Properties of Polymer Light Emitting Diodes with ITO/PEDOT:PSS/MEH-PPV/Al Structure (ITO/PEDOT:PSS/MEH-PPV/Al 구조의 고분자 유기발광다이오드의 특성 연구)

  • Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.213-217
    • /
    • 2005
  • The polymer light emitting diodes (PLED) with ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared on ITO(indium tin oxide)/Glass substrates using PEDOT:PSS[poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] as the hole transport material and MEH-PPV[poly(2-methoxy-5-(2-ethyhexoxy)-1,4phenylenvinylene)] as emission material layer. The dependences on the surface roughnees and friction coefficient between film layers were investigated as a function of the MEH-PPV concentrations$(0.1\;wt\%\~0.9\;wt\%)$. The RMS values decreased from 1.72 nm to 1.00 nm as the concentration of MEH-PPV increased from $0.1\;wt\%\;to\;0.9\;wt\%$, indicating improvement of surface roughness. In addition, friction coefficients decreased from 0.048 to 0.035, which means the deteriorating of the adhesion condition. The PLED sample with $0.5\;wt\%$ of MEH-PPV showed the maximum luminance of $409\;cd/m^2$.

  • PDF

Luminescent and electrical properties of MEH-PPV and 1,1,4,4-Tetraphenyl-1,3-butadiene Double Layer films (MEH-PPV와 TPB 다층박막의 광발광 및 전기적 특성)

  • 이명호;김영관;신동명;최종선;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.163-166
    • /
    • 1997
  • Electroluminescent(EL) dcvice based on organic thin layers have attracted lots of interests because of thier possible application as large-area light-emitting displays. It was known that MEH-PPV and 1, 1, 4, 4, -Tetraphenyl-1, 3-butadiene(TPB) has red and blue emission peak at 580nm and 480nm, respectively. In this study, MEH-PPV films and TPB films were prepared by spin coating and vacuum deposition method, respectively. Films of MEH-PPV and TPB double layer were also prepared by the same method. Photoluminescent(PL) characteristics of these single and doubler layers were investigated, where a cell structure of glass substrate/ITO/MEH-PPV and/or TPB/Al was employed. It was found that the photoluminescent efficiency of TPB film was higher than that of MEH-PPV film with a single layer and also with a double structure. These films have also different I-V characteristics.

  • PDF

고분자 혼합 용액의 열처리에 따른 상분리 현상을 이용한 백색 유기발광 소자의 발광층의 표면 성질 변화

  • Jeon, Yeong-Pyo;Lee, Dae-Uk;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.469-469
    • /
    • 2012
  • 유기발광소자는 빠른 응답속도, 넓은 시야각, 얇은 두께의 특성으로 차세대 디스플레이 소자 기술로 많은 주목을 받고 있다. 백색 조명 광원 관련 기술은 친환경 에너지와 관련하여 연구가 활발하게 진행되고 있다. 청색과 황색의 유기물층을 적층하여 제작한 백색 유기발광소자는 서로 다른 두 유기물질의 계면 불균일로 인한 효율 저하와 형광 여기자의 수명과 유기물의 두께 상관관계에 따라 색안정성이 나빠지는 문제점이 있다. 본 연구에서는 고분자 poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV)와 polystyrene (PS) 혼합물을 스핀코팅 방법을 사용하여 박막을 형성한 후 열처리에 의한 상분리 현상을 이용하여 선택적으로 PS 물질을 제거하여 MEH-PPV 황색 고분자 발광층을 형성하여 황색 고분자 발광층의 표면 성질 변화를 관찰하였다. 고분자 MEH-PPV와 PS의 혼합 비율과 혼합층 두께에 따른 MEH-PPV 황색 고분자 박막의 변화를 원자힘 현미경을 통하여 관찰할 수 있었다. MEH-PPV 황색 고분자 발광층의 표면 특성은 MEH-PPV와 PS 혼합물의 PS 혼합비가 높아지면 표면거칠기가 작아지며, 혼합된 두 고분자 물질의 분자량의 차이에 의한 응집도의 차이로 인하여 MEH-PPV와 PS 혼합물 박막의 두께가 얇아지면 표면거칠기가 커진다. 이 연구 결과는 고분자-저분자 혼합 발광층 구조를 사용하는 백색 유기발광소자의 효율 향상에 대한 기초자료로 활용할 수 있다.

  • PDF

The Fabrication and Properties of Polymer Light Emitting Diode with different concentration of MEH-PPV (MEH-PPV 농도에 따른 고분자 OLED의 제작과 특성평가)

  • Gong Su-cheol;Chang Ho-jong;Baek In-jae;Lim Hyun-Seung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.173-176
    • /
    • 2005
  • 고분자 OLED는 저분자 OLED에 비하여 공정이 간단하고 대화면, Plastic 기판을 사용하여 All organic display로의 구현이 있다는 많은 장점을 가지고 있지만 소자의 신뢰성과 안정성에 문제를 갖고 있어 현재까지 저분자 OLED에 비하여 기술 수준이 미약하다. 그러나 차세대 디스플레이의 실현을 위하여 많은 대학과 기업연구소에서 많은 연구가 진행중이다. 본 논문에서는 ITO/PEDOT:PSS/MEH-PPV/Al 구조를 갖는 고분자 OLED를 제작하고 발광메커니즘에 대한 고찰과 계면특성 및 전기$\cdot$광학적 특성을 조사하였다. 정공수송물질인 PEDOT:PSS은 박막의 표면상태를 부드럽게하고 ITO와 MEH-PPV 사이의 접착을 좋게하며 ITO 로부터 정공을 원활하게 MEH-PPV로 전달하여 효율을 향상시킨다. 제작된 소자는 발광효율을 극대화시키기 위하여 정공수송층인 PEDOT:PSS을 첨가시킨 다층구조로서 각각의 박막을 열처리 및 MEH-PPV의 농도를 0.1, 0.3, 0.5, 0.7, 0.9, 1.5wt$\%$로 변화시켜 농도별 표면상태와 전기$\cdot$광학적 특성을 관찰하여 고효율 OLED소자 제작에 가장 적합한 MEH-PPV의 농도에 대하여 고찰하였다.

  • PDF

Synthesis and Light-emitting Properties of Random Copolymers Composed of Phenylsilyl- and Alkoxy-Sustituted Phenylenevinylene

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.263-267
    • /
    • 2013
  • New random copolymers of phenylsilyl- and alkoxy-substituted phenylenevinylene, DMPS(9)-MEH(1)-PPV, DMPS(5)- MEH(5)-PPV and DMPS(1)-MEH(9)-PPV, have been synthesized by the Gilch dehydrohalogenation route, and the light-emitting properties of these polymers have been studied. The synthesized polymers were completely soluble in common organic solvents, and exhibited good thermal stability, almost up to $380^{\circ}C$. They showed UV-visible absorbance and photoluminescence (PL) in the ranges of 422-510 and 513-590 nm, respectively, according to their feed ratios. Electroluminescent devices were fabricated with these polymers as emitting layers, and ITO and Al as anode and cathode, respectively. DMPS(1)-MEH(9)-PPV, DMPS(5)-MEH(5)-PPV and DMPS(9)-MEH(1)-PPV exhibited EL emission maxima at 575 nm, 565 nm, and 541 nm, respectively.

Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures (열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구)

  • 조중연;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.35-38
    • /
    • 2003
  • Polymer light emitting diode (PLED) with an ITO/MEH-PPV/Al structure were prepared by spin coating method on the ITO (indium tin oxide)/glass substrates, using poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV) as the light emitting material. The dependence of heat treatment on the electrical and optical properties for the prepared PLED samples were investigated. The luminance decreased greatly from 630 cd/$\m^2$ to 280 cd/$\m^2$ at 10V input voltage as the heating temperature increased from $65^{\circ}C$ to $170^{\circ}C$. In addition, the luminance efficiency was found to be about 2 lm/W for the sample heat treated at $65^{\circ}C$. These results may be related to the interface roughness and/or the formation of an insulation layer, which is caused by the reaction between electrode and MEH-PPV organic luminescent film layer.

  • PDF

Fabrication and Characterization of Polymer Light Emitting Diodes by Using PFO/PFO:MEH-PPV Double Emitting Layer (PFO/PFO:MEH-PPV 이중 발광층을 이용한 고분자 유기발광다이오드의 제작과 특성 연구)

  • Chang, Young-Chul;Shin, Sang-Baie
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • To improve the external quantum efficiency by means of the optimization of the polymer light emitting diodes(PLEDs) structure, the PLED with ITO/PEDOT:PSS/(PFO)/PFO:MEH-PPV/LiF/Al structure were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly (3,4-ethylenedioxythiophene): poly(styrene sulfolnate)] were used as transparent anode film and hole transport materials, respectively. PFO[poly(9,9-dioctylfluorene)] and MEHPPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and dopant materials. The doping concentration of MEH-PPV was 9wt% with thickness of about $400{\AA}$. We investigated the dependence of the PFO thickness ranging from $200{\AA}$ to $300{\AA}$ on the electrical, optical properties of PLEDs. Among prepared PLED devices with different PFO thicknesses, the highest value of the luminance was obtained for the PLED device with $250{\AA}$ in thickness. As a result, the current density and luminance ware found to be about $400mA/cm^2$ and $1500cd/m^2$ at 13V, respectively. In addition, the luminance and current efficiency of PLED device with double emitting layer (PFO/PFO:MEH-PPV) were improved about 3 times compared with the one with single emitting layer (PFO:MEH-PPV).

  • PDF

The Effects of Sintering Temperature of Organic Ag Complex on the Photoluminescence Characteristics of MEH-PPV (유기 은(Ag) 화합물의 소결 온도가 MEH-PPV의 PL특성에 미치는 영향)

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.328-329
    • /
    • 2009
  • This paper presents the effect of organic Ag complex sintering temperature on the MEH-PPV photoluminescence (PL) properties. MEH-PPV and organic Ag complex was coated on the glass substrate by spin coating method. The coated Ag complex was sintered in an air atmosphere. The sintering temperature was varied from 100 to $200^{\circ}C$ and sintering time was 5 min. The Ag film sintered at temperature higher than $120^{\circ}C$ shows very low sheet resistance less than $0.5\;{\Omega}{/\square}$. The coated MEH-PPV measure photoluminescence (PL) intensity at 580 nm. The PL peak was shifted to the higher wavelength with increasing the sintering temperature.

  • PDF

Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer (PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성)

  • Lee, Hak-Min;Gong, Su-Cheol;Shin, Sang-Bae;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Ho-Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF