Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. Therefore in this work, AST (Accelerated Stress Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. There was interaction between membrane degradation and electrode degradation. Membrane degradation reduced the decrease range of catalyst active area by electrode degradation. Electrode degradation reduces increase range of the hydrogen crossover current and FER (Fluoride Emission Rate) by membrane degradation.
본 연구에서는 저온 데칼 전사법을 이용하여 막 전극 접합체(Membrane Electrode Assembly, MEA)를 제조하였다. 제조된 MEA는 직접 메탄올 연료 전지(Direct Methanol Fuel Cell, DMFC)를 이용하여 성능 테스트를 하였다. 저온 데칼 전사법은 $140^{\circ}C$의 낮은 온도에서 촉매 층을 데칼 기판에서 멤브레인으로 전사시키고, 전사된 촉매 층의 표면에 형성되는 것으로 알려진 이오노머 스킨 층의 형성을 막기 위해 이오노머/촉매/카본/기판의 구조로 되어 있는 데칼 기판을 사용한다. 저온 데칼 전사법으로 제조 된 카본 층이 있는 MEA의 DMFC 성능이 카본 층이 없이 데칼 전사법으로 제조된 MEA나 전통적인 고온 데칼 전사법으로 제조된 MEA, 또는 직접 스프레이 코팅법으로 제조된 MEA의 성능보다 높게 나온 것을 알 수 있다. 저온 데칼 전사법으로 제조된 MEA의 DMFC 성능이 향상된 것은 촉매 층 위에 이오노머 스킨이 형성되지 않아 반응물의 확산이 원활하게 이루어지기 때문이다. 이를 위한 특성 분석으로 EIS, CV를 측정하였다.
Catalyst coated membrane [CCM] type and catalyst coated substrate [CCS] type of membrane electrode assembly [MEA] were manufactured and evaluated their performance. Degradation test were conducted to find the difference of long term stability in two types of MEA and the factor for performance degradation problem occurred. Performance degradation test of single cell in two different types of MEA were carried out when current density was $200mA/cm^{2}$. The degradation test had proceeded for 230 hours and performance degradation was checked by I-V curve and impedance measurement at regular intervals. Also, MEA before/after operation and changes of catalyst layer were characterized by SEM, TEM, and XRD. Maximum power density of CCM type was higher than that of CCS type. Meanwhile, an increase of particle size of catalyst and an increase of impedance resistance after long term operation were observed. In the case of using CCM type MEA, the performance was deteriorated 38% of initial performance. In the case of using CCS type MEA, the performance was deteriorated 43% of initial performance. In consideration of difference of initial performance, performance of CCM type is higher than that of CCS type but both types had similar problems during degradation test.
Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.
Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
Clean Technology
/
v.13
no.4
/
pp.293-299
/
2007
Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.
Microbial fuel cells (MFC) were operated with pig wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). Performance of hydrocarbon membrane was compared with that of perfluoro membrane at MFC condition. Sulfonated-Poly(Arylene Ether Sulfone) was used as hydrocarbon membrane and Gore membrane was used as perfluoro membrane. OCV of sPAES MEA was 50mV higher than that of Gore MEA and power density of sPAES MEA was similar that of Gore MEA. Reinforcement of sPAES membrane stabilized the performance of MEA in MFC. The highest performance was obtained at temperature of $45^{\circ}C$ and with culture solution circulation rate of 50 ml/min. The highest power density was $1,100mW/m^2$ at optimum condition in MFC using pig waste.
Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.
Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. The effect of electrode degradation on membrane degradation was studied in this work. We compared membrane degradation after electrode degradation and membrane degradation without electrode degradation. I-V performance, hydrogen crossover current, fluoride emission rate (FER), impedance and TEM were measured after and before degradation of MEA. Electrode degradation reduced active area of Pt catalyst, and then radical/$H_2O_2$ evolution rate decreased on Pt. Decrease of radical/$H_2O_2$ reduced the velocity of membrane degradation.
Recently, direct formic acid fuel cells (DFAFC) among direct liquid fuel cells is studied actively. Economical hydrocarbon membranes alternative to fluorinated membranes for DFAFC's membrane are receiving attention. In this study, characteristics of sulfonated poly(ether ether ketone, sPEEK) and sulfonated poly(arylene ether sulfone, PAES) membranes were compared with Nafion membrane at DFAFC operation condition. Formic acid crossover current density of hydrocarbon membranes were lower than that of Nafion 211 fluorinated membrane. I-V performance of sPEEK MEA(Membrane and Electrode Assembly) was similar to that of Nafion 211 MEA due to similar membrane resistance each other. sPEEK MEA with low formic acid crossover showed higher stability compared with Nafion 211 MEA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.