DOI QR코드

DOI QR Code

Effect of Electrode Degradation on the Membrane Degradation in PEMFC

PEMFC에서 전극 열화가 전해질 막 열화에 미치는 영향

  • Song, Jinhoon (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Saehoon (HMC Eco Technology Research Institute) ;
  • Ahn, Byungki (HMC Eco Technology Research Institute) ;
  • Ko, Jaijoon (HMC Eco Technology Research Institute) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 송진훈 (순천대학교 화학공학과) ;
  • 김세훈 (현대자동차 환경기술연구소) ;
  • 안병기 (현대자동차 환경기술연구소) ;
  • 고재준 (현대자동차 환경기술연구소) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2012.09.22
  • Accepted : 2012.10.16
  • Published : 2013.02.01

Abstract

Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. The effect of electrode degradation on membrane degradation was studied in this work. We compared membrane degradation after electrode degradation and membrane degradation without electrode degradation. I-V performance, hydrogen crossover current, fluoride emission rate (FER), impedance and TEM were measured after and before degradation of MEA. Electrode degradation reduced active area of Pt catalyst, and then radical/$H_2O_2$ evolution rate decreased on Pt. Decrease of radical/$H_2O_2$ reduced the velocity of membrane degradation.

최근까지 대부분의 PEMFC MEA(Membrnae and Electrode Assembly) 열화 연구는 전극과 전해질 막 각각 분리되어 연구되었다. 그런데 실제 PEMFC 운전조건에서는 전극과 전해질 막은 동시에 열화된다. 동시열화과정에서 전극열화와 전해질 막 열화는 상호 작용한다. 본 연구에서는 전극열화가 전해질 막 열화에 미치는 영향에 대해 연구하였다. 전극 열화 후 전해질 막을 열화시켜 전극 열화없이 전해질 막을 열화시켰을 때와 비교하였다. 열화전후의 I-V 성능, 수소투과전류, 불소이온 유출 속도(FER), 순환 전압측정(CV), 임피던스, TEM 등을 측정하였다. 전극열화에 의해 백금촉매 활성 면적이 감소하고, 이에 따라 백금 상에서 라디칼/과산화수소 발생속도가 감소함으로써 막 열화속도가 감소함을 보였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance And Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc., 141, 2659-2668(1994). https://doi.org/10.1149/1.2059162
  11. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode- Assembly," J. Power Sources, 159, 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  12. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/ C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164, 126-133(2006).
  13. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  14. Kim, T. H., Lee, J. H., Lim, T. W. and Park, K. P., "Degradation of Polymer Electrolyte Membrane under OCV/Low Humidity Conditions," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45, 345-350(2007).

Cited by

  1. Effect of Membrane Degradation on the Electrode Degradation in PEMFC vol.51, pp.3, 2013, https://doi.org/10.9713/kcer.2013.51.3.325
  2. Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.671
  3. Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA vol.52, pp.2, 2014, https://doi.org/10.9713/kcer.2014.52.2.175
  4. Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.425
  5. Performance and Durability of PEMFC MEAs Fabricated by Various Methods vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.558
  6. Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.695
  7. Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test pp.1975-7220, 2018, https://doi.org/10.1007/s11814-018-0142-5
  8. 시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소 vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.540
  9. 고분자전해질 연료전지용 Poly(arylene ether sulfone) 막의 특성 vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.556
  10. 직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성 vol.53, pp.6, 2013, https://doi.org/10.9713/kcer.2015.53.6.690
  11. 돼지 분뇨와 sPAES 막을 이용한 미생물 연료전지의 특성 vol.54, pp.4, 2013, https://doi.org/10.9713/kcer.2016.54.4.453
  12. 고분자 전해질 연료전지 스택에서 전해질막의 열화 가속시험 vol.54, pp.1, 2013, https://doi.org/10.9713/kcer.2016.54.1.6
  13. sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성 vol.54, pp.2, 2013, https://doi.org/10.9713/kcer.2016.54.2.181
  14. 고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.305
  15. 고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.296
  16. 고분자전해질 연료전지의 성능에 미치는 습도와 플러딩의 영향 vol.55, pp.3, 2013, https://doi.org/10.9713/kcer.2017.55.3.302
  17. 순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교 vol.56, pp.4, 2013, https://doi.org/10.9713/kcer.2018.56.4.469
  18. 철-크롬 산화환원흐름전지에서 Sulfonated Poly (Ether Ether Ketone)막의 활물질 Crossover vol.57, pp.1, 2013, https://doi.org/10.9713/kcer.2019.57.1.17
  19. 저생 미생물 연료전지(BMFC)의 구동조건에 따른 성능 변화 vol.57, pp.2, 2013, https://doi.org/10.9713/kcer.2019.57.2.172
  20. 정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가 vol.57, pp.3, 2013, https://doi.org/10.9713/kcer.2019.57.3.344
  21. PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가 vol.59, pp.1, 2013, https://doi.org/10.9713/kcer.2021.59.1.11
  22. PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구 vol.59, pp.1, 2013, https://doi.org/10.9713/kcer.2021.59.1.6
  23. PEMFC 고분자막의 화학적 내구성 평가시간 단축 vol.59, pp.3, 2021, https://doi.org/10.9713/kcer.2021.59.3.333