• 제목/요약/키워드: MCVD(modified chemical vapor deposition)

검색결과 9건 처리시간 0.022초

화학증착용 천연가스버너 개발 (Development of the Natural Gas Burner for Modified Chemical Deposition Processes)

  • 유현석;이중성;한정옥;최동수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.75-81
    • /
    • 2001
  • MCVD(modified chemical vapor deposition) used in making optical-fiber currently utilizes the hydrogen-oxygen burner as a energy supply source. To improve the productivity and to reduce the manufacturing cost of optical-fiber, a natural gas-oxygen burner has been developed. The manufacturing processes of optical-fiber consist of vapor deposition, collapse and drawing processes. Among these processes, the vapor deposition and the collapse processes are important in terms of improving the productivity and saving the production cost. The vapor deposition and collapse processes are performed by combustion heat and flame force supplied by a burner. So the flame force of the burner used in these processes is required to have an optimal and consistent value in order to allow uniform heating and collapse of quartz tube. In this regard, the momentum ratio of natural gas and oxygen has been optimally determined by modification of a burner and the inlet flow pass also has been modified.

  • PDF

MCVD법을 이용한 광섬유 모재의 제작 (Fabrication of Optical Fiber Preform by MCVD Method)

  • 이기완;홍봉식
    • 한국통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.307-320
    • /
    • 1989
  • 본 논문은 모재 제작을 위한 Modified Chemical Vapor Deposition(MCVD) 장치의 새로운 설계를 제안하였다. MCVD 공정의 기본 장치로는 선반장치와 원료가스공급 장치가 포함되고, 언덕형 광섬유 설계, 공정의 특성 및 MCVD 모재의 굴정율 형태를 측정하는 실험장치를 각기 실현하였다. 연구결과, 중심부 딥(dip)이나 범프(bump) 가 보이지 않는 이상적 언덕형 굴절율 광섬유 모재를 얻었다.

  • PDF

수정된 화학증착(MCVD)에 관한 실험적 연구 - 온도분포와 입자부착 측정 (An Experimental Study of the Modified Chemical Vapor Deposition Process -Temperature Distribution and Particle Deposition Measurements-)

  • 조재걸;최만수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3057-3065
    • /
    • 1994
  • An experimental study has been made for heat transfer and particle deposition during the Modified Chemical Vapor Deposition process which is currently utilized to manufacture high quality optical waveguides. The distributions of tube wall temperatures, rates and efficiencies of particle deposition were measured. Results indicate that the temperature distributions of the tube wall in the axial direction yield the quasi-steady form in which temperature distributions fit in one curve if the relative distance from the moving torch is used as an axial coordinate. Due to the repeated heatings from the traversing torch, the wall temperatures are shown to reach the minimum ahead of torch and it is shown that the two torch formulation suggested by Park and Choi is valid to predict this minimum temperature. Measured wall temperatures, particle deposition efficiencies and tapered entry length are compared with the previous modelling results and shown to be in agreement.

수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석 (An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition)

  • 이방원;박경순;최만수
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

수정된 화학증착과정에서 토치이송과 고체층이 열전달과 입자부착에 미치는 영향 (Effect of Torch Speed and Solid Layer Thickness on Heat Transfer and Particle Deposition During modified Chemical Vapor Deposition Process)

  • 박경순;최만수
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1301-1309
    • /
    • 1994
  • A study of heat transfer and thermophoretic particle deposition has been carried out for the Modified Chemical Vapor Deposition(MCVD) process. A new concept utilizing two torches is suggested to simulate the heating effects from repeated traversing torches. Calculation results for the wall temperatures and deposition efficiency are in good agreement with experimental data. The effects of variable properties are included and heat flux boundary condition is used to simulate the moving torch heating. A conjugate heat transfer which includes heat conduction through solid layer and heat teansfer in a gas in a tube is analyzed. Of particular interests are the effects of torch speeds and solid layer thicknesses on the deposition efficiency, rate and the tapered entry length.

환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향 (Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes)

  • 최만수;박경순
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.

수정된 화학증착방법에서 비정상 열 및 물질전달 해석 (A study of unsteady heat and mass transfer in the modified chemical vapor deposition process)

  • 박경순;최만수
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.79-88
    • /
    • 1997
  • An analysis of unsteady heat and mass transfer in the Modified Chemical Vapor Deposition has been carried out including the effects of chemical reaction and variable properties. It was found that commonly used quasi-steady state assumption could be used to predict overall efficiency of deposition, however, the assumption would not provide detailed deposition profile. The present unsteady calculations of wall temperature profile and deposition profile have been compared with the existing experimental data and were in good agreement. The effects of variable torch speed were studied. Linearly varying torch speed case until time=120s resulted in much shorter tapered entry than the constant torch speed case.

이종 접합된 광섬유에 있어서 편광모드분산 특성에 관한 연구 (A Study on Polarization Mode Dispersion Properties of Concatenated Optical Fibers)

  • 이청학;류부형;김기대;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2456-2458
    • /
    • 1999
  • The polarization mode dispersion (PMD) that restricts the transmission bandwidth was investigated in standard long single mode fiber which optimized at 1.3${\mu}m$. Although fiber has perfect circular symmetry, each optical fiber has different refractive index profiles. The investigation of PMD with random mode couplings were conducted in three kinds of fiber by the time-domain interferometric method. By using two manufacturing methods, MCVD(Modified Chemical Vapor Deposition) method and VAD(Vapor Phase Axial Deposition) method, the property of mechanical asymmetric lateral pressure, bending and twisting induced polarization mode dispersion were measured. The concatenated optical fibers were compared with other types.

  • PDF

Effect of Soaking Temperature on Erbium Doping of Optical Fiber Core in MVCD Solution Doping Process

  • Han, Won-Taek;Kim, Yune-Hyoun;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제7권2호
    • /
    • pp.47-52
    • /
    • 2003
  • Effect of soaking temperature on erbium doping of the optical fiber core during solution doping procedure, especially in the modified chemical vapor deposition (MCVD) process, was investigated. The concentration of dopants such as $Er^{3+} and Al^{3+}$ in the preforms and the optical fibers measured by the electron probe microanalysis (EPMA) and the optical spectrum analyzer (OSA) was found to increase with decreasing the soaking temperature. The increase in the concentration of the $Er^{3+}$ is attributed to the precipitation of the erbium due to the decrease in the solubility as well as the increase of capillary force and viscosity of the doping solution by decreasing the temperature.