• 제목/요약/키워드: MCFC anode

검색결과 67건 처리시간 0.028초

MCFC anode 대체 전극 개발을 위한 분말 알루미나 상의 무전해 Ni 도금 연구 (Electoless Ni Plating on Alumina Powder to Application of MCFC Anode Material)

  • 김기현;조계현
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.131-137
    • /
    • 2007
  • The typical MCFC (molten carbonate fuel cell) anode is made of Ni-10%Cr alloy. The work of this paper is focused concerning long life of anode because Ni-10% Cr anode is suffering from sintering and creep behavior during cell operation. Therefore, Ni-coated Alumina powder($20{\mu}m$) was developed by electroless nickel plating. Optimum condition of electroless nickel coation on $20{\mu}m$ alumina is as follows: pH 11.7, temperature $65{\sim}80^{\circ}C$, powder amount $100cm^2/l$. The deposition rate for Ni-electroless plating was as a function of temperature and activation energy was evaluated by Arrhenius Equation thereby activation energy calculated slope of experimental data as 117.6 kJ/mol, frequency factor(A) was $6.28{\times}10^{18}hr^{-1}$, respectively.

용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

간접 내부 개질형 용융탄산염 연료전지 anode 채널에서의 압력 강하 및 온도 조건 변경에 따른 유량 균일도에 관한 수치 해석적 연구 (Numerical analysis of the gas flow-rate uniformity in the anode flow channel of indirect internal reforming molten carbonate fuel cell (MCFC) under different pressure drop and temperature conditions)

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2009
  • The uniform gas distribution between anode channels of the indirect internal reforming type molten carbonate fuel cell (MCFC) is crucial design parameter because of the electric performance and the durability problems. A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold under different pressure drop and channel temperature conditions. The combined meshes consists of hexadral meshes in the channels and polyhedral meshes in the manifold are adopted and chemical reactions inside the MCFC system are not included because of computational difficulties associated with the size and geometric complexity of the system. Results indicate that the uniformity in flow-rate is in the range of $\pm$ 0.048 % between the anode channels when the pressure drop of anode channel is about 150 Pa. A gas flow-rate uniformity decreases as the pressure drop of anode channels decreases and as the temperature difference between indirect internal reforming (IIR) channels and anode channels increases.

  • PDF

MCFC 배가스용 촉매연소기 연소특성에 관한 연구 (A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors)

  • 이상민;이연화;안국영;박인욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF

25 kW급 MCFC 배가스 촉매연소기의 실험적 연소특성 (An Experimental Study on the Reaction Characteristics of Anode offgas Catalytic Combustor for 25kW MCFC Systems)

  • 이상민;우현탁;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • Anode off-gas of high temperature fuel cells such as MCFC contains a significant amount of combustible components like hydrogen, carbon monoxide and methane according to fuel utilization ratio of the fuel cell stack. Thus, it is important to fully burn anode off-gas and utilize the generated heat in order to increase system efficiency and reduce emissions as well. In the present study, 25 kW catalytic combustor has been developed for the application to a load-following 300kW MCFC system. Mixing and combustion characteristics have been experimentally investigated with the catalytic combustor. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple catalysts having different structures and compositions. Results show that the exhaust emissions are highly dependent on the catalyst loading and the ratio of catalytic components. Test results at load-following conditions are also shown in the present study.

  • PDF

용융탄산염형 연료전지의 anode 전극 제작 (Electrode Fabrication of Molten Carbonate Fuel Cell Anode)

  • 김귀열;문성인;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.255-258
    • /
    • 1991
  • MCFC are expected as an electric and thermal power source of the urban cogenerating system because MCFC have higher electric power efficiency and better thermal power quality. However, the MCFC which use strorgly corrosive molten Carbonate at $650^{\circ}C$ have many problems. Material issues with the molten carbonate fuel cell in clude anode creep, conthode dissolution and bipolar plate corrosion. The objectives of this study are to examied fabrication process and characteristics of anode electrode.

  • PDF

용융탄산염 연료전지의 양극 대체재료의 개발에 관한 연구 (A Study on the Development of Anode Material for Molten Carbonate Fuel Cell)

  • 황응림;김선지;강성군
    • 에너지공학
    • /
    • 제2권3호
    • /
    • pp.293-299
    • /
    • 1993
  • 용융탄산염연료전지(MCFC)용 다공성 Ni 양극에 3~10 wt% Al를 첨가하여 tape casting 법으로 제조된 Ni-Al 양극의 전기화학적성능 및 구조적안정성이 조사되었다. 본 연구에서 제조된 양극의 전기화학적 성능이 $650^{\circ}C$, MCFC 양극분위기(80% H$_2$+20% $CO_2$)를 모사한 half-cell 에서 양분극 특성으로 평가되었는데, 전류밀도 150 ㎃/$\textrm{cm}^2$ 에서의 분극전압은 약 100 ㎷로 실용전지의 양극으로서 가능성을 보였다. Ni-Al 양극의 소결과 creep에 대한 저항성은 Ni 양극에 비해 증가되었는데, 이는 Ni 입자 표면에 형성된 $Al_2$O$_3$의 영향으로 판단되었다.

  • PDF

MCFC의 Anode 제작과 특성 (Anode Fabrication and Characterization of MCFC)

  • 김귀열;엄승욱;김인성;윤문수;문길호;연제홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.854-856
    • /
    • 1992
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650 [$^{\circ}C$] have many problems. This study has examined fabricating methods and specimen characteristics of porous anode electrode.

  • PDF

Ni-Al-$ZrH_2$ 연료극을 사용한 용융탄산염 연료전지의 온도의 영향 (Effect of operating temperature using Ni-Al-$ZrH_2$ anode in molten carbonate fuel cell)

  • 서동호;장성철;윤성필;남석우;오인환;임태훈;홍성안;한종희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2010
  • Fuel cell is a device that directly converts chemical energy in the form of a fuel into electrical energy by way of an electrochemical reaction. In the anode for a high temperature fuel cell, nickel or nickel alloy has been used in consideration of the cost, oxidation catalystic ability of hydrogen which is used as fuel, electron conductivity, and high temperature stability in reducing atmosphere. Most MCFC stacks currently operate at an average temperature of $650^{\circ}C$. There is some gains with decreased temperature in MCFC to diminish the electrolyte loss from evaporation and the material corrosion, which could improve the MCFC life. However, operating temperature has a strong related on a number of electrode reaction rates and ohmic losses. Baker et al. reported the effect of temperature (575 to $650^{\circ}C$). The rates of cell voltage loss were 1.4mV/$^{\circ}C$ for a reduction in temperature from 650 to $600^{\circ}C$, and 2.16mV/$^{\circ}C$ for a decrease from 600 to $575^{\circ}C$. The two major contributors responsible for the change in cell voltage with reducing operation temperature are the ohmic polarization and electrode polarization. It appears that in the temperature range of 550 to $650^{\circ}C$, about 1/3 of the total change in cell voltage with decreasing temperature is due to an increase in ohmic polarization, and the electrode polarization at the anode and cathode. In addition, the oxidation reaction of hydrogen on an ordinary nickel alloy anode in MCFC is generally considered to take place in the three phase zone, but anyway the area contributing to this reaction is limited. Therefore, in order to maintain a high performance of the fuel cell, it is necessary to keep this reaction responsible area as wide as possible, that is, it is needed to keep the porosity and specific surface area of the anode at a high level. In this study effective anodes are prepared for low temperature MCFC capable of enhancing the cell performance by using zirconium hydride at least in part of anode material.

  • PDF