• Title/Summary/Keyword: MCF7 cell

Search Result 733, Processing Time 0.028 seconds

Cytotoxic Effect of Flavonoids from the Roots of Glycyrrhiza uralensis on Human Cancer Cell Lines (감초(Glycyrrhiza uralensis Fisch.)로부터 분리된 flavonoid의 인체 암세포에 대한 세포독성)

  • Park, Ji-Hae;Wu, Qian;Yoo, Ki-Hyun;Yong, Hye-Im;Cho, Sueng-Mock;Chung, In-Sik;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.67-70
    • /
    • 2011
  • The roots of Glycyrrhiza uralensis Fisch. were extracted with 30% aqueous ethanol (EtOH), and the concentrated extract was partitioned with n-hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. From the $CHCl_3$ fraction, four flavonoids were isolated through the repeated silica gel ($SiO_2$), octadecyl silica gel (ODS), and Sephadex LH-20 column chromatographies (c.c.). According to the results of spectroscopic data including nuclear magnetic resonance spectrometry (NMR), electron ionization mass spectrometry (EI/MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as glabrol (1), abyssinone II (2), glabridin (3), and isoliquiritigenin (4). The flavonoids were evaluated for cytotoxic effect against human cancer cell lines, HCT-116, HepG2, HeLa, SK-OV-3, SK-BR-3, MCF-7, and SK-MEL-5. Especially, glabrol (1) and glabridin (2) showed $IC_{50}$ values of lower than $25{\mu}M$.

Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-negative Breast Cancer Cells

  • Luan, Yun-Yan;Liu, Zi-Min;Zhong, Jin-Yi;Yao, Ru-Yong;Yu, Hong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.531-535
    • /
    • 2015
  • Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs ($100{\mu}g$/ml) and GSPs ($200{\mu}g/mL$) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an p otential anti-VM botanical agent for human TNBCs.

Cytotoxic Effect of the Pine needle extracts (솔잎 추출물의 in vitro계 암세포 성장억제효과)

  • Kim, Eun-Jeong;Jung, Sung-Won;Choi, Keun-Pyo;Ham, Seung-Shi;Gang, Ha-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.213-217
    • /
    • 1998
  • This study was performed to observe cytotoxic effect of the pine needle extracts against cancer cell lines including human gastric carcinoma (KATOIII), human lung carcinoma (A549), human hepatocellular carcinoma (Hep3B) and human breast adenocarcinoma (MCF-7) using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and SRB (sulforhodamine B) method. The extracts were prepared by step-wise fractionation of ethanol extract of pine needles using diethylether, chloroform, ethylacetate, butanol and water. The growth of the cancer cells in medium containing pine needle extracts were significantly inhibited degree in proportion to the increase of the extract concentration. A significant shrinkage of Hep3B cells was observed when the cells were exposed into 0.5, 1 mg/mL of pinus rigida extract.

  • PDF

Anticancer Activity of the Safflower Seeds (Carthamus tinctorius L.) through Inducing Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • The seed of safflower (Carthamus tinctorius L) has been reported to suppress human cancer cell proliferation. However, the mechanisms by which safflower seed inhibits cancer cell proliferation have remained nuclear. In this study, the inhibitory effect of the safflower seed (SS) on the proliferation of human colorectal cancer cells and the potential mechanism of action were examined. SS inhibited markedly the proliferation of human colorectal cancer cells (HCT116, SW480, LoVo and HT-29). In addition, SS suppressed the proliferation of human breast cancer cells (MDA-MB-231 and MCF-7). SS treatment decreased cyclin D1 protein level in human colorectal cancer cells and breast cancer cells. But, SS-mediated downregulated mRNA level of cyclin D1 was not observed. Inhibition of proteasomal degradation by MG132 attenuated cyclin D1 downregulation by SS and the half-life of cyclin D1 was decreased in SS-treated cells. In addition, SS increased cyclin D1 phosphorylation at threonine-286 and a point mutation of threonine-286 to alanine attenuated SS-mediated cyclin D1 degradation. Inhibition of ERK1/2 by PD98059 suppressed cyclin D1 phosphorylation and downregulation of cyclin D1 by SS. In conclusion, SS has anti-proliferative activity by inducing cyclin D1 proteasomal degradation through ERK1/2-dependent threonine-286 phosphorylation of cyclin D1. These findings suggest that possibly its extract could be used for treating colorectal cancer.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Analysis of Antibacterial Activity against Food Spoilage and Food-borne Pathogens and Cytotoxicity on Human Cancer Cell Lines of Extracts from Pericarp and Seed of Vitis coignetiea (머루 과피와 종자 추출물의 식품 위해성 세균에 대한 항균성 및 인체 암세포주에 대한 cytotoxicity 분석)

  • Won, Ji-Hye;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2012
  • In this study, antibacterial activity and cytotoxicity of the extracts from pericarp and seed of $Vitis$ $coignetiea$, which were extracted with 0.1% HCl-60% ethanol, were analyzed. The antibacterial activity of the extracts was determined by paper disc diffusion method against food spoilage and food-borne pathogens. The pericarp extract showed high antibacterial activity against $Bacillus$ $cereus$, $Escherichia$ $coli$ O157:H7, and $Pseudomonas$ $aeruginosa$, and the seed extract represented the high antibacterial activity against $B.$ $cereus$, $E.$ $coli$ O157:H7, and $Staphylococcus$ $aureus$. The cytotoxicity of the $Vitis$ $coignetiea$ extract against human cancer cells was determined using the MTT assay and SRB assay. The pericarp extract represented strong growth-inhibition activity against G361 and Hep3B cells and the seed extract greatly inhibited the growth of HeLa and G361 cells in the MTT assay. In addition, the pericarp extract displayed a high inhibition activity against the growth of AGS cells and the seed extract greatly inhibited the growth of HeLa, Hep3B, and MCF7 cells in the SRB assay. Especially, the cytotoxicities of the seed extract against HeLa were significantly higher than those of the extract against other cancer cells at all test concentrations. This study demonstrates that the extract from pericarp and seed of $Vitis$ $coignetiea$ possess high antibacterial activity and cytotoxicity.

Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells

  • Oh Seung-Min;Kim Yeon-Pan;Chung Kyu-Hyuck
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.354-362
    • /
    • 2006
  • Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on $E_2$ concentration $(\leq\;10^{-12}M)$. Kaempferol $(10^{-5}\;M)$ also caused antiproliferative effect on MCF-7 cell in the presence of $E_2\;(10^{-11}\;M)$ and restored to the addition of excess $E_2\;(10^{-7}\;M)$, which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at $10^{-4}\;M$, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected $(10^{-5}\;M)$, kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess $E_2\;(10^{-7}\;M)$ indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by $E_2$, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).

Effects of Quinone Reductase Induction and Cytotoxicity of the Angelica radix Extracts (당귀 추출성분의 세포독성 효과와 Quinone Reductase 유도활성 효과)

  • 배송자;한은주;노승배
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.147-152
    • /
    • 2000
  • Various lines of evidence suggest that dietary components protect the initiation of carcinogenesis. In this study, the ethanol extracts (AGE) and the methanol and hexane partition layers (AGEM, AGEH) of the Angelica radix were screened for their cytotoxic effects using the MTT assay on HepG2, HeLa, MCF7 and SW626 cells and for their ability to induce quinone reductase (QR) in HepG2 cells. AGEM and AGEH of the Angelica radix showed the strongest cytotoxic effects on HepG2 and HeLa cells. Cell growth was inhibited by 99.8% and 99.8% on HepG2 cells and 99.3% and 99.4% on HeLa cells, at dose of $100\;\mu\textrm{g}/ml$ of AGEM and AGEH extracts respectively. AGE and AGEH significantly induced QR activities in the HepG2 cells. The QR activities of HepG2 cells grown in the presence of AGE, AGEH, and AGEM at the concentration of $50\;\mu\textrm{g}/mL$ were 313.5, 273.3 and 133.3 nmol/min/mg protein, respectively. Therefore, based on these studies, Angelica radix may be developed into a potentially useful cancer chemopreventive agent.

  • PDF

Iris Nertschinskia Ethanol Extract Differentially Induces Cytotoxicity in Human Breast Cancer Cells Depending on AKT1/2 Activity

  • Shin, Jae-Sik;Maeng, Hyung-Gun;Hong, Seung-Woo;Moon, Jai-Hee;Kim, Jin-Sun;Suh, Young-Ah;Kim, Eun-Sung;Lee, Young-Min;Kim, Ye-Seul;Choi, Eun-Kyung;Kim, Inki;Lee, Sok-Young;Cho, Dong-Hyung;Hong, Nam-Joo;Kim, Tae-Won;Jin, Dong-Hoon;Lee, Wang Jae
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6511-6516
    • /
    • 2012
  • Recently, we reported that an ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. However, the detailed mechanisms were not fully explored. Here, we demonstrate another aspect of the activity of I. nertschinskia in breast cancer cells. We compared the response to an ethanol extract of I. nertschinskia in two different human breast cancer cell lines, Hs578Tand MDA-MB231, respectively with relatively low and high AKT1/2 activity by trypan blue exclusion assay and FACS analysis. Knockdown of endogenous AKT1 or AKT2 in breast cancer cells by RNA interference determined the sensitivity to I. nertschinskia ethanol extract compared to control cells. The I. nertschinskia ethanol extract induced cell death in a manner that depended on the level of phosphorylated AKT1/2 protein and was associated with a significant increase in the sub-G1 cell population, indicative of apoptosis. Our results indicate that an ethanol extract of I. nertschinskia differentially induces cell death in breast cancer cells depending on their level of phosphorylated AKT1/2.