• Title/Summary/Keyword: MCF7 cell

Search Result 735, Processing Time 0.027 seconds

Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells (맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진)

  • Sung-Hun WOO;Yoon Suk KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • A pulsed electromagnetic field (PEMF) enhances the efficacy of several anticancer drugs. Doxorubicin (DOX) is an anticancer agent used to treat various malignancies, including breast cancer. This study examined whether a PEMF increases the anticancer effect of DOX on MCF-7 human breast cancer cells and elucidated the underlying mechanisms affected by PEMF stimulation in DOX-treated MCF-7 human breast cancer cells. A cotreatment with DOX and a PEMF potentiated the reduction in MCF-7 cell viability compared to the treatment with DOX alone. The PEMF elevated DOX-induced G1 arrest by affecting cyclin-dependent kinase 2 phosphorylation and the expression of G1 arrest-related molecules, including p53, p21, cyclin E2, and polo like kinase 1. In addition, PEMF increased the DOX-induced upregulation of proapoptotic proteins, such as Fas and Bcl-2-associated X, and the downregulation of antiapoptotic proteins, including myeloid leukemia 1 and survivin. PEMF promoted the DOX-induced activation of caspases-8, -9, and -7 and poly (adenosine diphosphate-ribose) polymerase cleavage in MCF-7 cells. In conclusion, PEMF enhances the anticancer activity in DOX-treated MCF-7 breast cancer cells by increasing G1 cell cycle arrest and caspase-dependent apoptosis. These findings highlight the potential use of a PEMF as an adjuvant treatment for DOX-based chemotherapy against breast cancer.

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.

Shipyeukmiyeugi-eum Extracts Suppressed Tumor Growth through Immunomodulatory Effects on MCF-7 (십육미유기음(十六味流氣飮)의 면역활성(免疫活性)에 의한 유방암(乳房癌) 세포 성장억제효과(成長抑制效果))

  • Jung, Yeon-Chul;Park, Young-Sun;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.3
    • /
    • pp.40-60
    • /
    • 2012
  • Objectives: The object of this study was to observe antitumor, anticachexia and immunomodulatory effects of Shipyeukmiyeugi-eum(SYM) on human breast cancer cell, MCF-7, xenograft Balb/c nu-nu nude mice. Methods: Three different dosages of SYM-125, 250 and 500 mg/kg were orally administered once a day for 28 days from 11 days after tumor cell inoculation, and the changes on the body weights, tumor volume and weights, weights of spleen and popliteal lymph node and epididymal fat, serum IL-6 and IFN-${\gamma}$ levels, NK cell and peritoneal macrophage activities, splenic TNF-${\alpha}$, IL-$1{\beta}$ and IL-10 contents were observed. In addition, histopathological observations of apoptotic cell, spleen, popliteal lymph node and cervical brown adipose were also detected. The results were compared with a potent cytotoxic estrogen receptor antagonist, Tamoxifen 20 mg/kg treated mice. Results: Tumor volumes and weights were decreased without cytotoxic effects on the both MCF-7 and MCF-10A cells as results of all three different dosages of SYM treatment. And weights of body, spleen, popliteal lymph node, epididymal fat, serum IFN-${\gamma}$, NK cell, peritoneal macrophage activities, splenic TNF-${\alpha}$, IL-$1{\beta}$ and IL-10 contents were increased with decrease of serum IL-6. At histopathological observations, apoptotic tumor cells, spleen, popliteal lymph node and cervical brown adipose tissue were increased. That means tumor-related immunosuppress and cachexia were markedly inhibited by SYM treatment as compared with tumor-bearing mice. On the other hand, Tamoxifen showed marked cytotoxic effects against MCF-7 and MCF-10A, decreases of tumor volume and weights, and increases of apoptotic tumor cells and related decreases of tumor cell volumes, but tamoxifen markedly deteriorated the tumor-related immune-suppress and cachexia. Conclusions: The results obtained in this study suggest that SYM showed favorable anticancer effects and anticachexic effects on the MCF-7 cell xenograft through immunomodulatory effects. SYM did not induce any cytotoxic effects against both normal and cancer cells.

In Vitro Study of Tumor Seeking Radiopharmaceutical Uptake by Human Breast Cancer Cell Line MCF-7 after Paclitaxel Treatment (사람 유방암세포주 MCF-7에 Paclitaxel 처치 후 종양영상용 방사성의약품 섭취 변화에 대한 시험관내 연구)

  • Choi, Joon-Young;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.364-372
    • /
    • 2007
  • Purpose: This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. Materials and Methods: F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Results: Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. Conclusion: The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

Parkin Reduces Expression of Monocyte Chemotactic Protein-1 (MCP-1) in TNF-${\alpha}$-stimulated MCF7 Breast Cancer Cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Lee, In-Soo;Rhee, Ki-Jong;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.261-265
    • /
    • 2011
  • Parkin is a putative tumor suppressor protein and its expression is frequently reduced or absent in several types of tumors. In this study, we examined the role of Parkin in mRNA expression of monocyte chemotactic protein-1 (MCP-1) in the breast cancer cell line MCF7. Expression of MCP-1 mRNA increased after TNF-${\alpha}$ treatment. However, overexpression of Parkin induced a decrease in expression of MCP-1 mRNA in TNF-${\alpha}$-stimulated MCF7. This decrease in MCP-1 mRNA by Parkin overexpression occurred in a dose- and time-dependent manner. Using a wound scratch assay, we found that Parkin overexpression in MCF7 cells also resulted in a decrease in cell migration. These results suggest that Parkin down-regulates MCP-1 synthesis leading to decreased migration of tumor cells. We suggest that one possible mechanism by which Parkin acts as a tumor suppressor is by inhibiting migration or metastasis of cancer cells.

Signal Transduction-related Gene Expression Analysis in MCF-7 followed by $\gamma$-radiation (MCF-7 세포주에서$\gamma$선에 의한 세포신호 전달 관련 유전자의 발현 양상의 분석)

  • 박지윤;황창일;박웅양;김진규;채영규
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.52-55
    • /
    • 2003
  • There is considerable evidence that ionizing radiation (IR) mediates checkpoint control, repair and cell death. In this study, we have used a high density microarray hybridization approach to characterize the transcriptional response of human breast carcinoma MCF-7 cell line to ${\gamma}$-radiation, such as 4 Gy 4 hr, 8 Gy 4 hr, and 8 Gy 12 hr. We found that exposure to ${\gamma}$-ray alters by at least a $log_2$ factor of 1.0 the expression of 115 known genes. Of the 66 genes affected by ${\gamma}$-radiation, 49 are down-regulated. In our results, the cellular response to irradiation includes induction of the c-jun and EGR1 early response genes. The present work has examined potential cytoplasmic signaling cascades that transduce IR-induced signals to the nucleus. 40S ribosomal protein s6 kinase modulates the activities of the mitogen activated protein kinase (MAPK) and c-Jun $NH_2$-terminal kinase (JNK1) cascades in human monocytic leukemia (U937/pREP4) cells. 14-3-3 family members are dimeric phosphoserine -binding proteins that participate in signal transduction and checkpoint control pathways.

Enhanced Anti-cancer Efficacy in MCF-7 Breast Cancer Cells by Combined Drugs of Metformin and Sodium Salicylate

  • Kim, Yun-Ji;Park, Hee-Bin;Kim, Pyung-Hwan;Park, James S.;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.290-294
    • /
    • 2017
  • Metformin or sodium salicylate is known to induce apoptosis and G0/G1 phase arrest in a variety of cancer cells. However, the anti-cancer effects of the combined treatments for these drugs-induced apoptosis are yet unclear. Here, we found that the combined treatment of metformin and sodium salicylate increased the efficacy of chemotherapeutics against breast cancer cells. These combined drugs significantly inhibited cellular proliferation and induced apoptosis at an earlier stage in human MCF-7 breast cancer cells. Also, co-treatments of metformin and sodium salicylate induced G1 cell cycle arrest in MCF-7 cells more effectively than either agent alone. Taken together, these results demonstrate that dual metformin/sodium salicylate treatment prevents proliferation of MCF-7 cells by inducing apoptosis and G1 cell cycle arrest.

In Vitro Estrogenic Activity of Silkworm (Bombyx mon) Pupa and Herbs (누에(Bombyx mori) 번데기 및 한약재의 In Vitro 에스트로젠 활성)

  • Yang Ji-Won;Choi Eun-Mi;Kwon Mu-Gil;Koo Sung-Ja
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.3
    • /
    • pp.315-322
    • /
    • 2005
  • In this study we report on the estrogen activity of silkworm pupa and herb extracts in vitro. The estrogenic activity of these resources was investigated by competition binding assays with estrogen receptor $\alpha(ER{\alpha})\;or\;ER{\beta}$, and viability of MCF-7 cells, a human breast cancer cell line. Saturation ligand-binding analysis of $ER{\alpha}\;and\;ER{\beta}$ revealed that all plant extracts competed with estrogen ligand for binding to both ER subtypes with a similar preference and degree and competed stronger with ligand for binding to $ER{\beta}\;than\;to\;ER{\alpha}$. The highest $ER{\alpha}-binding$ sample was silkworm pupa aqueous extract The highest $ER{\beta}-binding$ sample was silkworm pupa oil. These samples were further tested for bioactivity based on their ability to regulate cell growth rate in ER(+) breast cancer cell line, MCF-7 cells. Our studies showed that silkworm pupa, soritae, sesame, yam, pueraria, malt, ginseng, Polygonum multiflorum, and Curcuma longa significantly stimulated the growth of MCF-7 cells (P<0.05). In summary, these results suggested that silkworm pupa and herbs might be useful as potential phytoestrogens.

  • PDF