DOI QR코드

DOI QR Code

Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells

맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진

  • Sung-Hun WOO (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Yoon Suk KIM (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University)
  • 우성훈 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 김윤석 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과)
  • Received : 2023.12.18
  • Accepted : 2024.01.11
  • Published : 2024.03.31

Abstract

A pulsed electromagnetic field (PEMF) enhances the efficacy of several anticancer drugs. Doxorubicin (DOX) is an anticancer agent used to treat various malignancies, including breast cancer. This study examined whether a PEMF increases the anticancer effect of DOX on MCF-7 human breast cancer cells and elucidated the underlying mechanisms affected by PEMF stimulation in DOX-treated MCF-7 human breast cancer cells. A cotreatment with DOX and a PEMF potentiated the reduction in MCF-7 cell viability compared to the treatment with DOX alone. The PEMF elevated DOX-induced G1 arrest by affecting cyclin-dependent kinase 2 phosphorylation and the expression of G1 arrest-related molecules, including p53, p21, cyclin E2, and polo like kinase 1. In addition, PEMF increased the DOX-induced upregulation of proapoptotic proteins, such as Fas and Bcl-2-associated X, and the downregulation of antiapoptotic proteins, including myeloid leukemia 1 and survivin. PEMF promoted the DOX-induced activation of caspases-8, -9, and -7 and poly (adenosine diphosphate-ribose) polymerase cleavage in MCF-7 cells. In conclusion, PEMF enhances the anticancer activity in DOX-treated MCF-7 breast cancer cells by increasing G1 cell cycle arrest and caspase-dependent apoptosis. These findings highlight the potential use of a PEMF as an adjuvant treatment for DOX-based chemotherapy against breast cancer.

펄스 전자기장(pulsed electromagnetic field, PEMF)은 여러 항암제의 항암 효과를 향상시키는 것으로 알려져 있고 독소루비신(doxorubicin, DOX)은 유방암을 포함한 다양한 종류의 악성 종양을 치료하는 데 사용되는 항암제이다. 본 연구는 PEMF가 MCF-7 유방암 세포에 대한 DOX의 항암 효과 증진 여부를 조사하고 관련기전을 규명하기 위해 진행되었다. 본 연구팀은 DOX와 PEMF를 동시에 처리하면 DOX 단독 처리에 비해 MCF-7 유방암 세포의 생존율 감소가 더 커지는 것을 확인하였다. PEMF는 cyclin-dependent kinase 2의 인산화와 p53, p21, 사이클린 E2 및 polo like kinase 1의 단백질 발현에 영향을 주어 DOX 처리에 의한 G1 세포주기 정지를 더욱 증가시켰다. 또한, PEMF는 DOX 처리에 의한 Fas와 Bcl-2-associated X의 증가, myeloid leukemia 1과 survivin의 감소, 카스파제(caspase)-8/9/7의 활성 및 poly (adenosine diphosphate-ribose) polymerase 절단을 더욱 증가시켰다. 이러한 연구결과를 바탕으로, 본 연구팀은 PEMF는 DOX 처리에 의한 G1 세포주기 정지와 카스파제 의존적 세포자멸사를 더욱 증가시켜 DOX 처리에 의한 MCF-7 세포의 생존율 감소를 더욱 증진시킴을 확인할 수 있었다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2018R1D1A1B07049134).

References

  1. Yang R, Guo Z, Zhao Y, Ma L, Li B, Yang C. Compound 968 reverses adriamycin resistance in breast cancer MCF-7ADR cells via inhibiting P-glycoprotein function independently of glutaminase. Cell Death Discov. 2021;7:204. https://doi.org/10.1038/s41420-021-00590-1 
  2. Gillaizeau F, Chan E, Trinquart L, Colombet I, Walton RT, RegeWalther M, et al. Computerized advice on drug dosage to improve prescribing practice. Cochrane Database Syst Rev. 2013;11:CD002894. https://doi.org/10.1002/14651858.cd002894.pub3 
  3. Dolkart O, Kazum E, Rosenthal Y, Sher O, Morag G, Yakobson E, et al. Effects of focused continuous pulsed electromagnetic field therapy on early tendon-to-bone healing. Bone Joint Res. 2021;10:298-306. https://doi.org/10.1302/2046-3758.105.bjr-2020-0253.r2 
  4. Overholt TL, Ross C, Evans RJ, Walker SJ. Pulsed electromagnetic field therapy as a complementary alternative for chronic pelvic pain management in an interstitial cystitis/bladder pain syndrome patient. Case Rep Urol. 2019;2019:5767568. https://doi.org/10.1155/2019/5767568 
  5. Funk RHW, Fahnle M. A short review on the influence of magnetic fields on neurological diseases. Front Biosci (Schol Ed). 2021;13:181-189. https://doi.org/10.52586/s561 
  6. Vadala M, Morales-Medina JC, Vallelunga A, Palmieri B, Laurino C, Iannitti T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med. 2016;5:3128-3139. https://doi.org/10.1002/cam4.861 
  7. Chen MY, Li J, Zhang N, Waldorff EI, Ryaby JT, Fedor P, et al. In vitro and in vivo study of the effect of osteogenic pulsed electromagnetic fields on breast and lung cancer cells. Technol Cancer Res Treat. 2022;21:15330338221124658. https://doi.org/10.1177/15330338221124658 
  8. Sengupta S, Balla VK. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res. 2018;14:97-111. https://doi.org/10.1016/j.jare.2018.06.003 
  9. Woo SH, Kim B, Kim SH, Jung BC, Lee Y, Kim YS. Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death. BMB Rep. 2022;55:148-153. https://doi.org/10.5483/bmbrep.2022.55.3.119 
  10. Ramazi S, Salimian M, Allahverdi A, Kianamiri S, Abdolmaleki P. Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line. Sci Rep. 2023;13:8844. https://doi.org/10.1038/s41598-023-35767-4 
  11. Lupertz R, Watjen W, Kahl R, Chovolou Y. Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology. 2010;271:115-121. https://doi.org/10.1016/j.tox.2010.03.012 
  12. Smirnikhina SA, Zaynitdinova MI, Sergeeva VA, Lavrov AV. Improving homology-directed repair in genome editing experiments by influencing the cell cycle. Int J Mol Sci. 2022;23:5992. https://doi.org/10.3390/ijms23115992 
  13. Gogolin S, Ehemann V, Becker G, Brueckner LM, Dreidax D, Bannert S, et al. CDK4 inhibition restores G(1)-S arrest in MYCN-amplified neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell Cycle. 2013;12:1091-1104. https://doi.org/10.4161/cc.24091 
  14. Shao Z, Jiang M, Yu L, Han Q, Shen Z. p53 independent G1 arrest and apoptosis induced by adriamycin. Chin Med Sci J. 1997;12:71-75. 
  15. Lee TK, Lau TC, Ng IO. Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother Pharmacol. 2002;49:78-86. https://doi.org/10.1007/s00280-001-0376-4 
  16. Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O. p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res. 2009;69:8726-8732. https://doi.org/10.1158/0008-5472.can09-0729 
  17. Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep. 2022;12:1959. https://doi.org/10.1038/s41598-022-05793-9 
  18. Waldorff EI, Zhang N, Ryaby JT. Pulsed electromagnetic field applications: a corporate perspective. J Orthop Translat. 2017;9:60-68. https://doi.org/10.1016/j.jot.2017.02.006 
  19. Loja T, Stehlikova O, Palko L, Vrba K, Rampl I, Klabusay M. Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells. Electromagn Biol Med. 2014;33:190-197. https://doi.org/10.3109/15368378.2013.800104 
  20. Crocetti S, Beyer C, Schade G, Egli M, Frohlich J, Franco-Obregon A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 2013;8: e72944. https://doi.org/10.1371/journal.pone.0072944 
  21. Radeva M, Berg H. Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields. Bioelectromagnetics. 2004;25:503-507. https://doi.org/10.1002/bem.20023 
  22. de Seze R, Tuffet S, Moreau JM, Veyret B. Effects of 100 mT time varying magnetic fields on the growth of tumors in mice. Bioelectromagnetics. 2000;21:107-111. https://doi.org/10.1002/(sici)1521-186x(200002)21:2%3C107::aid-bem5%3E3.0.co;2-6 
  23. Markov MS. Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med. 2007;26:257-274. https://doi.org/10.1080/15368370701580806 
  24. Park JS, Park YJ, Kim HR, Chung KH. Polyhexamethylene guanidine phosphate-induced ROS-mediated DNA damage caused cell cycle arrest and apoptosis in lung epithelial cells. J Toxicol Sci. 2019;44:415-424. https://doi.org/10.2131/jts.44.415 
  25. Mhone TG, Chen MC, Kuo CH, Shih TC, Yeh CM, Wang TF, et al. Daidzein synergizes with gefitinib to induce ROS/JNK/c-Jun activation and inhibit EGFR-STAT/AKT/ERK pathways to enhance lung adenocarcinoma cells chemosensitivity. Int J Biol Sci. 2022;18:3636-3652. https://doi.org/10.7150/ijbs.71870 
  26. Bruinsma W, Raaijmakers JA, Medema RH. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem Sci. 2012;37:534-542. https://doi.org/10.1016/j.tibs.2012.09.005 
  27. Giraldez S, Galindo-Moreno M, Limon-Mortes MC, Rivas AC, Herrero-Ruiz J, Mora-Santos M, et al. G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. FASEB J. 2017;31:2925-2936. https://doi.org/10.1096/fj.201601108r 
  28. Li J, Wang R, Schweickert PG, Karki A, Yang Y, Kong Y, et al. Plk1 inhibition enhances the efficacy of gemcitabine in human pancreatic cancer. Cell Cycle. 2016;15:711-719. https://doi.org/10.1080/15384101.2016.1148838 
  29. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. https://doi.org/10.3389/fonc.2022.985363 
  30. Liu X, Erikson RL. Polo-like kinase (Plk) 1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A. 2003;100:5789-5794. https://doi.org/10.1073/pnas.1031523100